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In this paper, we present a solution method based on finite element (FE) modeling to pre-
dict multimodal dispersive waves in a free rail. As well as the modal behaviors and
wavenumber-frequency dispersion relations, the phase and group velocities of six types
of propagative waves are also derived and discussed in detail in the frequency range of
0–5 kHz. To experimentally distinguish different types of wave modes, the operating
deflection shape (ODS) measurement approach is employed in the laboratory. ODS is mea-
sured from the spatial distribution of imaginary parts of the FRFs. We also propose a syn-
chronized multiple-acceleration wavelet (SMAW) approach to experimentally study the
propagation and dispersion characteristics of waves in a free rail. The group velocities in
the vertical, longitudinal and lateral directions are estimated from the wavelet power spec-
tra (WPSs). The good agreement between the simulation and measurement in terms of
mode shapes and ODSs, wavenumber-frequency dispersion curves, and group velocities
indicates that the ODS and SMAW approaches are capable of distinguishing different wave
modes and measuring wave propagation and dispersion characteristics. In situ experimen-
tal results further demonstrate the effectiveness of the ODS measurement for coupled
modal identification and the SMAW approach for wave dispersion analysis of the rail in
a field track.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Rail vibrations play an important role in wheel-rail interactions, especially in the high-frequency range. Noise and corru-
gation problems in railway engineering are related to rail vibrations; for example, the lateral and vertical rail modes dom-
inate rolling noise radiation from 500 to 1600 Hz and generally remain important at higher frequencies up to 5 kHz [1]. Short
pitch corrugation has been reported to be related to the ‘pinned-pinned’ resonance at approximately 1 kHz [2,3], which is a
rail vertical bending mode with a wavelength of two sleeper spacings. Recently, new insights into short pitch corrugation
have proposed that longitudinal rail modes are responsible for corrugation initiation [4]. Therefore, investigations of rail
vibrations in the vertical, longitudinal and lateral directions are of great importance for understanding these problems.

Rail vibrations can be seen as the superposition of a series of propagative waves [1]. Wavenumber-frequency dispersion
relations, and phase and group velocities provide fundamental information to understand wave propagation characteristics.
In the literature, many models have been developed to model the rail, including analytical beam or plate models [5–11,14],
the semi-analytical or 2.5D FE model (SAFE) [12,15,18–20], and the 3D FE model [11,13,17]. The analytical beam or plate
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models assume a constant cross-section of the rail, which is only valid at low frequencies [9]. The 2.5D FE model and 3D FE
model can both consider rail cross-section deformation, which is important to accurately predict the dispersion relations.
Although the computation efficiency of the 2.5D FE model is higher because it treats the longitudinal direction analytically,
the 3D FE model has the advantages that it is capable of modeling nonlinear wheel-rail dynamic contact, which is important
when studying wheel-rail rolling noise and short pitch corrugation. Many papers [16,18–21] have reported on the dispersion
curves and phase and group velocities of rail waves in the ultrasound frequency range (i.e., 100 kHz) for long-range rail
inspection. In the frequency range of rolling noise and short pitch corrugation (below 5 kHz), Thompson [9] and Gavric
[12] predicted the dispersion curves, while the phase and group velocities were not presented. In this paper, we applied a
3D FE model to predict the dispersive waves in a free rail at 0–5 kHz and derived the phase and group velocities.

Although many models have predicted the multiple wave modes in a free rail [9,12,16], few experimental methods have
been reported in the literature to distinguish different wave modes. One possible reason is that most researchers have
focused only on the vertical rail vibration because the wheel-rail excitation mainly acts in this direction [5,10,13]. There
is only one type of wave mode called the vertical bending mode in this direction; thus, the influence of modal coupling is
insignificant. However, when studying three-dimensional rail vibrations, modal coupling of different directions may occur,
whichmakes one natural frequency correspond to multiple rail modes. In this case, the widely used experimental method for
the railway structure, frequency response function (FRF) measurement [22–24], has difficulty identifying the coupled modes
because it can only obtain the natural frequencies. Another experimental method named operating deflection shape (ODS)
measurement can derive both the natural frequencies and the corresponding mode shapes. In the literature [25–28], this
method has been successfully applied in specific engineering structures such as beams and plates. The modes were uncou-
pled in these studies because the beams and plates have relatively simple cross-sections, and the research interest only
focused on the vertical direction at frequencies lower than 1600 Hz. In this work, the rail has a more complicated arbitrary
cross-section geometry, and our research interest is three-dimensional rail vibrations up to 5 kHz. Considerably more vibra-
tion modes (hundreds) need to be dealt with, and they may couple with each other. Coupled modes have dissimilar wave-
lengths that hinder the ability of sensors to capture them simultaneously. In this paper, the ODS measurement will be used
to distinguish coupled wave modes in a free rail.

In addition to the multiple modes, dispersion is another feature of the propagative waves in a rail that makes the exper-
imental identification of waves more difficult [9,12,16]. For the experimental analysis of the propagation and dispersion of
elastic waves, the wavelet transform (WT) has been proven to be an effective tool [18,29–33]. Lanza [34] applied this time–
frequency analysis method in railway tracks and obtained group velocity dispersion curves for the vertical, longitudinal, and
lateral rail vibration modes at 1–7 kHz. Only qualitative agreement was achieved with Gavric’s numerical simulation results
[12]. The deviations between the measurement and simulation may have been caused by the different boundary conditions
of the rail. In Gavric’s simulation, the rail had a free-free boundary, while in Lanza’s experiment, the rail was supported by
steel pads on wooden sleepers, which introduced additional stiffness and damping to the rail. In addition, the accuracy of the
single-acceleration wavelet approach used in Lanza’s experiment might have been reduced by the wave reflection at the rail
ends. To improve the experimental accuracy and achieve better agreement with the simulation, a synchronized multiple-
acceleration wavelet (SMAW) approach will be developed in this paper. The test boundary condition will also be improved
by the experimental setup to better match the free-free boundary of the FE simulation.

The purpose of this work is to gain a better understanding of free rail vibrations and provide experimental methods to
distinguish different wave modes and measure wave propagation and dispersion characteristics. The paper is organized
as follows. In Section 2, a 3D FE model is built to predict the multimodal dispersive waves in a free rail. The modal behavior,
wavenumber-frequency dispersion relations, and phase and group velocities of these waves are derived. In Section 3, two
methods—ODS measurement and SMAW measurement—are introduced for the experimental investigation of the multi-
modal dispersive waves. In Section 4, the experimental results, including ODSs, wavenumber-frequency dispersion curves,
WPSs and group velocities, are obtained and compared with the simulations. Section 5 discusses the advantages and disad-
vantages of ODS measurements and SMAW measurements and the effectiveness of these two methods in field tracks. The
main conclusions are drawn in Section 6.
2. Numerical simulation of multimodal dispersive waves in free rail

In this section, we present a solution method based on FE modeling to predict the multimodal dispersive waves in a free
rail. The method includes 1) building a 3D FE model of a free rail using ANSYS; 2) a modal analysis to derive the natural fre-
quencies, modal shapes, and cross-section deformation; and 3) a numerical prediction of dispersion relations by postpro-
cessing the modal results, including phase and group velocities. Fig. 1 shows a flowchart of this method.
2.1. 3D FE model

A 3D FE rail model is built with ANSYS, as shown in Fig. 2a. The rail is modeled with 8-node solid elements based on the
measured UIC 54E1 profile used in the experimental setup in Section 4. The rail length in the model is 4.97 m. Fig. 2b shows
the mesh of the rail cross-section. The rail profile is discretized with an equal element edge length of 4 mm. The longitudinal
element size is 10 mm. As the mesh size, model length and rail profile are crucial parameters for FE prediction, their details
2



Fig. 1. Flowchart of the solution method based on FE modeling.
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are discussed in the Appendix. The rail material is treated as elastic and isotropic with a Young’s modulus of 210 GPa, a Pois-
son’s ratio of 0.3 and a density of 7850 kg/m3. A free boundary condition is applied, and no damping effect is considered. The
dynamic behaviors of the rail are studied through modal analysis. The mode extraction method used is Block Lanczos, and
the analyzed frequency range is up to 5 kHz.

2.2. Modal results

Six types of characteristic modes of the rail are extracted in the vertical, longitudinal, and lateral directions up to 5 kHz.
The modes in the vertical and longitudinal directions are specifically referred to as vertical bending modes (designated ‘I’ in
Fig. 3) and longitudinal compression modes (II). The modes in the lateral direction include four types of cross-sectional
3



Fig. 2. 3D FE rail model: (a) overview of rail model; (b) mesh of cross-section.

P. Zhang et al. Mechanical Systems and Signal Processing 150 (2021) 107305
deformation, regarded as lateral bending modes (III), lateral torsion modes (IV), web 1st bending modes (V), and web 2nd

bending modes (VI). Each mode is described in terms of three features: modal frequency, mode shape and cross-sectional
deformation.

For all six types of modes, the modal shapes in the longitudinal direction (x direction) are approximately sinusoidal, and
their wavelengths (k) are derived from the FE simulation. The wavelengths of vertical bending modes (I) and lateral bending
modes (II) are approximately 2L/(N + 0.5), and wavelengths of the other four types of rail modes are approximately 2L/ N,
where L is the rail length, and N is an integer.

Fig. 3 shows the cross-sectional deformation of the six types of rail modes. The color contrast indicates the relative dis-
placements of the elements. Blue is the minimum displacement, and red is the maximum.

For vertical bending modes (I), the rail moves vertically and has no cross-sectional deformation below around 1 kHz, at
which point the rail foot begins to flap. At higher frequencies, rail foot flapping becomes increasingly dominant, while the
displacement of the rail head decreases. For longitudinal compression modes (II), the rail has dominant axial displacement,
and the cross-section does not deform in the whole frequency range of 0–5 kHz.

With lateral bending modes (III), the rail undergoes lateral displacement and exhibits no cross-sectional deformation
below around 420 Hz, at which point the rail foot starts rotating. As the frequency increases, the rail head displacement
decreases and rail foot rotation increases, which causes the deformation of the rail web. Above around 4600 Hz, the rail head
is almost stationary, and rail foot rotation dominates the rail vibration. For lateral torsion modes (IV), the rail movement can
be seen as a rigid rotation of the cross-section at low frequency. As the frequency increases, the rotation of the rail head
decreases and is replaced by horizontal displacement, while the deformation shape of the rail foot remains almost
unchanged, which together results in rail web bending.

Web 1st bending modes (V) start from 1570 Hz. For these modes, the rail head rotates out of phase with the rail foot and
causes significant bending of the rail web. The largest deformation of the rail web occurs near its middle part. Web 2nd bend-
ing modes (VI) appear first at around 4400 Hz. In contrast to web 1st bending modes, the rail head rotates in phase with the
rail foot for these modes and results in double bending of the rail web. The largest deformation of the rail web occurs at its
two ends, and the middle part is nearly stationary.
2.3. Dispersion relations

The characteristic modes outlined above (standing waves) are directly equivalent propagative waves of an infinite rail [9].
Each natural frequency and wavelength corresponds to a point on the wavenumber-frequency dispersion curves. The
wavenumbers are calculated by k = 2p/k, where k is the wavelength, k is the wavenumber.

Fig. 4 shows the dispersion curves of the six types of waves by connecting the discrete wavenumber-frequency points in a
frequency range of 0–5 kHz. These waves are distinguished with different symbols and Roman numerals. Vertical bending
waves (I), longitudinal compression waves (II), lateral bending waves (III) and lateral torsion waves (IV) all cut on at 0 Hz.
Web 1st and 2nd bending waves (V, VI) propagate from 1570 Hz and 4440 Hz, respectively. Longitudinal compression waves
(II) have the largest curve gradients, while web 2nd bending waves (VI) have the smallest gradients. Vertical bending waves
(I) and lateral torsion waves (IV) cross each other at approximately 660 Hz, which indicates that these two waves may exhi-
bit mode coupling and swap their modal shapes at this frequency. Similar phenomena occur for longitudinal compression
waves (II) and web 1st (V) and 2nd bending waves (VI) at 1640 Hz and 4800 Hz, respectively. When the rail is symmetrical,
this mode coupling and veering between different waves are negligible [17].
4



Fig. 3. Cross-sectional deformation of vertical bending modes (I), longitudinal compression modes (II), lateral bending modes (III), lateral torsion modes
(IV), web 1st bending modes (V), and web 2nd bending modes (VI).
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Fig. 4. Wavenumber-frequency dispersion curves of vertical bending waves (I), longitudinal compression waves (II), lateral bending waves (III), lateral
torsion waves (IV), web 1st bending waves (V), and web 2nd bending waves (VI).
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The results of Fig. 3 and Fig. 4 are in agreement with those in [9,12]. The small differences, such as ‘cut-on’ frequencies of
web 1st and 2nd bending waves are likely to be caused by the different rail profiles (BR flat-bottomed rail in [9] and UIC861-3
in [12]) used for the prediction.

Two kinds of wave velocities, phase and group velocities, are typically used to describe wave propagation characteristics
in two aspects. They are calculated from the wavenumber-frequency relation as follows [35]:
vp ¼ x
k
¼ 2p

f
k

ð1Þ
vg ¼ dx
dk

¼ 2p df
dk

ð2Þ
where vp is the phase velocity, vg is the group velocity, x is the angular frequency, f is the ordinary frequency and k is the
wavenumber. From (1) and (2), it can be seen that the phase velocity is the secant slope at a point on the wavenumber-
frequency curve multiplied by 2p, and the group velocity is the corresponding tangential slope multiplied by 2p.

Fig. 5 shows the derived phase and group velocity dispersion curves. Vertical bending waves (I) are dispersive waves since
the velocities are frequency-dependent. The phase velocity of this type of wave starts from 0 m/s at the cut-on frequency,
then increases gradually to approximately 1670 m/s at 3.6 kHz, and remains almost constant at higher frequencies. The
group velocity also starts from 0 m/s at 0 Hz and then rises dramatically but with a decreasing rate to approximately
2000 m/s at 1 kHz. At 1–3 kHz, it is approximately frequency-independent, and at higher frequencies, a slight decrease
appears.

Longitudinal compression waves (II) can be regarded as nondispersive waves in a frequency range of 0–5 kHz, although a
gradually decreasing trend is found for both the phase and group velocity as the frequency increases. The average velocity of
Fig. 5. Dispersion curves of (a) phase velocity and (b) group velocity.
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approximately 5100 m/s matches well with the propagation velocity of compression waves in solid guides, which
is

ffiffiffiffiffiffiffiffiffi
E=q

p ¼ 5172m=s, where E = 210 GPa and q = 7850 m/s for the rail material.
Lateral bending waves (III) are dispersive waves, with the trends of phase and group velocities similar to those of vertical

bending waves (I), but the values are approximately 300 m/s lower. Lateral torsion waves (IV) propagate at approximately
900 m/s at low frequencies. Above 500 Hz, the phase and group velocities of this type of wave follow a trend similar to those
of vertical and lateral bending waves (I, III). Above 4000 Hz, there is a gradual increase in group velocity in comparison to the
decrease in vertical and lateral bending waves (I, III).

At the cut-on frequency of web 1st bending waves (V), the wavenumber equals zero (k = 0), and therefore, the phase veloc-
ity becomes infinite. As the frequency increases to 3 kHz, the phase velocity drops drastically to 1830 m/s. Then, it remains
almost constant at higher frequencies. The group velocity rises significantly to 1000 m/s at 1710 Hz from 0 m/s at the cut-on
frequency. At higher frequencies, it increases gradually to 2710 m/s. The phase and group velocities of web 2nd bending
waves (VI) follow a trend similar to web 1st bending waves (V). Since the maximum frequency of interest is 5 kHz, only lim-
ited portions of these waves are shown in Fig. 5b.
3. Methods of experimental investigation

This section describes two experimental methods and compares them with the numerical simulation of the multimodal
dispersive waves in a free rail. One method is operating deflection shape (ODS) measurement, which is used to distinguish
between different wave modes. Then, the wavenumber-frequency curves of the waves are derived by postprocessing the
ODSs and compare with those of the simulated waves. The other method is synchronized multiple-acceleration wavelet
(SMAW) measurement, which is used to measure the propagation and dispersion characteristics of the waves. The group
velocities in the vertical, longitudinal and lateral directions are estimated from the WPSs and compared with the FE simu-
lation results.

3.1. Sensor distribution

Lanza [34] applied a single-acceleration wavelet approach to study wave propagation in rails, as shown in Fig. 6a. This
approach relied on the reflection signal from the rail ends to estimate the group velocities. Energy loss in the waves might
occur during the reflection, leading to weak and less measurable signals, causing the signal-to-noise ratio to be too low and
thus creating measurement error. Therefore, the SMAW approach is used in this work to avoid this potential error, as shown
in Fig. 6b. More information about the wave propagation and dispersion along the rail is also expected from the multiple
accelerometer measurement.

The ODS measurement also requires the simultaneous measurement of multiple accelerometers with a multichannel
acquisition system [37]. The spatially equal accelerometer distribution is typically used for the convenience of data process-
ing. The number of accelerometers determines the largest measurable wavenumbers of the modes. More accelerometers
mean a larger wavenumber and higher wave wavenumber resolution but also a much higher cost. As a compromise, nine
equally distributed accelerometers are used in this work, as shown in Fig. 6c.

The sensor distribution in Fig. 6c, together with a synchronized signal acquisition system, meets the demands for both the
ODS measurement and the SMAW measurement and is applied in the following experimental setup.

3.2. Experimental setup

Fig. 7 shows a schematic drawing of the experimental setup. A 4.97 m long rail was suspended in the air by two nylon
ropes. Because of the small stiffness and damping levels of the ropes, the rail can be considered to be in ‘free vibration’. Nine
Fig. 6. Sensor distribution. (a) Single-acceleration wavelet for group velocity estimation in [34]; (b) SMAW approach for group velocity estimation in this
paper; (c) sensor distribution for ODS measurement used in the real setup.
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Fig. 7. Schematic drawing of the experimental setup.
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3D accelerometers (PCB 356B21, denoted as 1–9 in Fig. 7) were glued onto the rail head with a spacing of approximately
0.62 m. The smallest wavelength of the measurable modes by this sensor distribution is twice the sensor spacing of
1.24 m, corresponding to the largest wavenumber of approximately 5.06 rad/m. The responses of the nine accelerometers
are denoted as follows:
aiðtÞ ¼ ½axi ðtÞ; ayi ðtÞ; azi ðtÞ�T ; i ¼ 1;2; :::;9 ð3Þ

where ai(t) is the response of the ith accelerometer, which includes three components aix(t), aiy (t), and ai

z (t) in the longitu-
dinal vertical and lateral directions, respectively. The experimental setup is for both the ODS measurement and SMAW mea-
surement. For the ODS measurement, accelerometers 1–9 were used. For the SMAW measurement, accelerometers 1, 5, and
9 were used.

A small impact hammer (PCB 086C03) with a steel tip was used to excite the rail in the high frequency range. The exci-
tation positions were as close to 3D accelerometer 1 as possible for the longitudinal, lateral and vertical directions, as indi-
cated by the red arrows in Fig. 7, and recorded as F1x(t), F1y(t), and F1

z(t). The choice of the excitation positions at a rail free end
is to ensure that excitation forces are not on a nodal line of any modal shape. The excitation and response signals of 5 impacts
in each direction were recorded by a synchronized signal acquisition system with a sampling frequency of 51200 Hz. The
reliable range of the impact forces and the repeatability of the signals were checked, and they were valid within 5 kHz.

3.3. Experimental methods

3.3.1. ODS measurement method
The ODSs are measured from a set of FRFs. The FRFs in the longitudinal direction (x) can be calculated as follows [38]:
Hx
i ðf Þ ¼

Sax
i
Fx1
ðf Þ

SFx1Fx1 ðf Þð2pf Þ
2 ð4Þ
where Hi
x(f) is longitudinal FRF of accelerometer i; Sax

i
Fx1
is the cross-spectrum between the acceleration ai

x(t) and force F1
x; and

SFx1Fx1 is the auto-spectrum of the force F1
x. The FRFs are complex-valued functions. The ODSs of rail displacement responses

are taken as the spatial distribution of the imaginary parts of the FRFs, as follows [37].
ODSxðf Þ ¼ ½ImðHx
1ðf ÞÞ; ImðHx

2ðf ÞÞ; :::; ImðHx
9ðf ÞÞ� ð5Þ
where ODSx(f) is the longitudinal ODS at frequency f. When the frequency is one of the rail natural frequencies, the ODS will
closely approximate the mode shape [37]. The lateral and vertical FRFs and ODSs can be obtained with the same method.

Fig. 8 shows one example to explain the procedure of the ODSmeasurement for modal identification. First, a set of vertical
FRFs at the nine positions are obtained with the hammer test, as shown in Fig. 8a and 8b. Second, the resonance peaks at
492 Hz (indicated by red dashed circles in Fig. 8b) are detected from the magnitude of the FRFs, which may correspond
to one or more natural rail modes. Third, the imaginary parts of the FRFs at this peak frequency at the nine positions are
derived, as depicted in Fig. 8c. Last, the ODS is taken as their spatial distribution along the rail, as shown in Fig. 8d. By com-
8



Fig. 8. ODS measurement at 492 Hz for modal identification. (a) Sensor distribution of hammer test; (b) magnitude of FRFs at nine positions; (c) imaginary
parts of FRFs at nine positions; (d) measured ODS at 492 Hz; (e) simulated mode shapes at 491 Hz. The red circles in (b) and (c) indicate the detected peaks
at 492 Hz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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paring the measured peak frequency and ODS with the simulated natural frequency and mode shape (see Fig. 8e), one ver-
tical vending mode at 491 Hz in the FE simulation is identified. Other rail modes can be identified with the same procedures.

After deriving the peak frequencies and ODSs from FRFs, the wavenumber-frequency curves can be obtained and com-
pared with the simulated curves.
3.3.2. SMAW measurement method
Wave propagation signals along the rail under an impulsive hammer excitation are nonstationary and contain many fre-

quency components. To address this kind of signal, the continuous wavelet transform (CWT) is applied. In the CWT, the con-
volutions of the analyzed signal are calculated with a group of scaled and shifted wavelet functions. The wavelet coefficients
Wn(s) of the analyzed signal xn can be represented as follows [39]:
Wn sð Þ ¼
XN�1

n0¼0

xn0w
� n0 � nð Þdt

s

� �
ð9Þ
whereW is the mother wavelet, s is the wavelet scale, N is the number of points in the time series, n0 ¼ 0; . . . ;N � 1, dt is the
time step, n is the continuous variable for the translation, s is the wavelet scale, � presents a complex conjugate and

w� n0�nð Þdt
s

h i
is a family of wavelets deduced from the mother wavelet by various translation and scaling steps. Here, the Morlet

function is employed as the mother wavelet [40]. The wavelet power spectrum (WPS) is calculated by W2
n sð Þ

��� ���. The SMAW

measurement refers to the measured WPSs of synchronized accelerations at positions 1, 5 and 9.
An algorithm to estimate group velocity from the WPSs is developed, as shown in Fig. 9a.
9



Fig. 9. The algorithm of group velocity estimation from WPSs: (a) the flowchart of the algorithm; (b) one example of the algorithm. The white line in (b)
showsWPSs at 2500 Hz. The red triangles indicate the detected first peaks fromWPSs at 2500 Hz. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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First, WPSs of acceleration signals at the two rail ends are calculated. Then, one frequency fj (i.e., 2500 Hz) is chosen in the
WPSs, as indicated by the white solid lines in Fig. 9b. The first peaks at time t1 and time t2 are detected from the WPSs at
these two positions (see the red triangles), which indicate the first arrival of the wave. There is a time difference dt between
these two peaks, during which time the waves propagate through one rail length (L). Therefore, the group velocity at fj is
calculated as follows:
vg ¼ L
ðt2 � t1Þ ð10Þ
10
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Afterward, we move to the next frequency fj+1 and repeat the procedure above. At some frequencies, the vibration energy
of the waves is small, and the obvious peaks, as in Fig. 9b, may not be accurately detected from theWPSs. For these cases, the
group velocity at these frequencies cannot be estimated accurately or cannot be measured at all.
4. Experimental results

4.1. Results of ODS measurement

Fig. 10 shows the vertical, longitudinal and lateral FRFs of the rail at accelerometer 1. There are many peaks of the FRF in
each direction, which can be classified into ‘major peaks’ and ‘minor peaks’. Major peaks ( ) of the longitudinal FRF (Fig. 10b)
refer to longitudinal compression modes, while minor peaks ( ) refer to other modes, e.g., vertical bending modes (see black
dashed lines in Fig. 10a and 10b for examples). The appearance of minor peaks comes from the mode coupling of the differ-
ent directions. Major and minor peaks can be distinguished by peak frequencies and the corresponding ODSs. Fig. 10c shows
the coupling of four groups of major peaks, representing lateral bending, lateral torsion, web 1st bending and web 2nd bend-
ing modes. Specifically, two groups of major peaks at 0–1560 Hz correspond to lateral bending and torsion modes, and at
approximately 1560 Hz and 4400 Hz, with the supplement of web 1st and 2nd bending modes (indicated by two black arrows,
respectively).

The results of the ODS measurement are derived and shown in Fig. 11. All six types of rail modes predicted from the FE
model are identified by the ODSs. Three examples are chosen for each type and compared to the modal results of the numer-
ical simulation. The simulated natural frequencies and mode shapes agree well with the measured peak frequencies and the
corresponding ODSs. It should be noted that the smallest wavelength that can be measured by the ODSs is 1.24 m, with an
accelerometer spacing of 0.62 m. The modes with wavelengths smaller than 1.24 m could be measured by reducing the
accelerometer spacing, which was not included in this paper.

Based on the results of the ODS measurement, the dispersion curves are measured by connecting the discrete
wavenumber-frequency points (see Fig. 12). Among them, points ( ) of wavenumbers below 5.06 rad/m (2p/1.24) are
derived directly from the ODSs. For points ( ) of higher wavenumbers, their natural frequencies are derived from the major
peak frequencies of FRFs. The latter may require further comparison from measurements with a more dense accelerometer
arrangement. Comparing the measured dispersion curves with the simulation, very good agreement was found in the fre-
quency range of 0–5 kHz, except for a slight overestimation (1.3%) for the web 2nd bending wave (VI) of the FE model.
The good agreement also verifies that the cross-section size of 4 mm and the longitudinal element size of 10 mm are accurate
Fig. 10. (a) Vertical, (b) longitudinal, (c) lateral FRFs of rail at accelerometer 1. ( ) indicates major peaks; ( ) indicates minor peaks.
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Fig. 11. Comparison between the mode shapes from FE simulation (‘Worn 10 in A. 3) and ODSs from measurement (I) vertical bending modes at 42/43
(simulation/measurement), 345/341, 845/843 Hz, (II) longitudinal compression modes at 515/517, 1545/1550, 3084/3095 Hz, (III) lateral bending modes at
18/18, 97/97, 416/414 Hz, (IV) lateral torsion modes at 81/82, 246/248, 527/530 Hz, (V) web 1st bending modes at 1570/1555, 1693/1681, 2008/2000 Hz,
(VI) web 2nd bending modes at 4440/4383, 4505/4448, 4718/4666 Hz.
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enough for studying rail dynamic behavior within 5 kHz, and the measured rail height can achieve a better solution than the
nominal height, with the largest difference being 3.8%.

4.2. Results of SMAW measurement

The WPSs for vertical signals at accelerometers 1, 5 and 9 are shown in Fig. 13a, 13b and 13c, respectively. The color con-
trast indicates the amount of energy concentrated in a frequency range (the vertical axis) at a particular time (the horizontal
axis). The shapes of the wave envelope are captured from the WPSs. The wave envelope propagation along the rail can be
clearly seen: at time t1z, the impulsive hammer is excited on the rail close to accelerometer 1; then, the energy envelope
propagates to accelerometer 5 at time t2z and to accelerometer 9 at time t3z; after that, the waves reflect at accelerometer
9 and return to accelerometer 5 at time t4z and to accelerometer 1 at t5z. From t1z to t5z, the wave envelope finishes a cycle,
and the propagation distance is twice the rail length (2L).
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Fig. 12. Wavenumber-frequency dispersion curves: (—) FE simulation (‘Worn 10 in A. 3); ( ) wavenumber-frequency points derived from ODSs; ( ) the
points with measured natural frequencies and predicted wavenumbers.

Fig. 13. WPSs of vertical signals at (a) accelerometer 1, (b) accelerometer 5 and (c) accelerometer 9. The red dashed lines indicate the selected time. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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During wave propagation, the shapes of the wave envelope change due to the dispersive characteristics of the rail—the
dependence of velocity on frequency. With increasing time, the wave gradually takes a ‘C’ shape, qualitatively indicating that
the vertical wave velocity (group velocity) in the middle frequency range is higher than those in the lower and higher fre-
quency ranges, which agrees with the calculated results in Fig. 5b. The shape at time t1z at accelerometer 1 is relatively irreg-
ular because of the near field waves.

Wave energy densities at accelerometers 1 and 9 are similar and significantly larger than those at accelerometer 5, which
indicates that the vibrations at the two rail ends are stronger because of the free boundaries. In addition, the wave energy at
the three positions is attenuated during propagation, as observed from the increasingly dark color of the wave envelope.

The WPSs for the longitudinal and lateral signals are shown in Fig. 14 and Fig. 15. Waves in these two directions have
propagation traces similar to the vertical ones, but it can be clearly seen that the longitudinal group velocity is larger than
those of the vertical and lateral waves. From the numerical results in Section 2.4, it can be predicted that the shapes of the
13



Fig. 14. WPSs of longitudinal signals at (a) accelerometer 1, (b) accelerometer 5 and (c) accelerometer 9. The red dashed lines indicate the selected time.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. WPSs of lateral signals at (a) accelerometer 1, (b) accelerometer 5 and (c) accelerometer 9. The red dashed lines indicate the selected time.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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longitudinal wave envelopes should not change with propagation, since the longitudinal group velocity is frequency-
independent within 5 kHz. However, moderate deformation is observed in Fig. 14, which may be caused by signal coupling
from other directions, which is also shown in Fig. 10b. The lateral wave envelopes deform with time and have a shape similar
14
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to the vertical ones. The shapes of the lateral waves at high frequencies are quite irregular, which is likely caused by the
superposition of the four types of lateral waves.

The group velocities for the vertical, longitudinal and lateral waves are presented in Fig. 16. The measured vertical group
velocity curve agrees well with that of the simulation in the frequency range of 400–3500 Hz. From 3500 to 4200 Hz, the
numerical results underestimate the velocity slightly. Below 400 Hz and above 4200 Hz, the vertical vibration energy is
too low (see Fig. 13 to identify the peaks from the WPSs accurately). Good agreement of the measured and simulated lon-
gitudinal group velocity is achieved in the frequency range of 900 Hz–5 kHz. The velocity below 900 Hz cannot be obtained
precisely with lower vibration energy (see Fig. 14a). The measured lateral group velocity coincides well with that of the sim-
ulated lateral bending waves (III) in the frequency range of 200–3800 Hz. This means that the lateral bending waves dom-
inate the rail head vibration in this frequency range. At frequencies above 3800 Hz, the measured group velocity curve does
not follow that of any single type of wave but stays between web 1st bending waves (V) and the other three types. It is likely
that in this frequency range, the four types of waves contribute together to the rail head vibration. In summary, good agree-
ment between the simulated and measured group velocities has been achieved, indicating that the 3D FE model can accu-
rately predict the propagation and dispersion of waves in a free rail.

Compared to the experimental results by the single-acceleration wavelet approach in [34], the proposed SMAW approach
better presents the wave propagation and dispersion along the free rail with multiple synchronized WPSs. The valid frequen-
cies of group velocity estimation are also extended to a broader frequency range owing to the higher signal-to-noise ratio.
5. Discussion

In this section, we discuss the advantages and disadvantages of ODS measurements and SMAW measurements and the
effectiveness of these two methods in field tracks based on preliminary experimental results.
5.1. Discussion of ODS and SMAW measurement

The experimental results of the ODS and SMAW measurements are both in good agreement with the simulation results,
which indicate these two approaches are capable of distinguishing wave modes and measuring wave propagation and dis-
persion characteristics. The ODS and SMAW measurement methods have their own respective advantages and disadvan-
tages. ODS measurement is able to identify all types of rail modes and distinguish between them easily from their
wavelengths. SMAW measurements can only identify waves that have prominent vibration energy. Therefore, arrangements
of the sensors at different locations of the rail cross-section (e.g., the middle part of rail web) will be helpful to identify dif-
ferent waves (e.g., web 1st bending waves). The advantage of SMAW measurement is its capability to obtain continuous dis-
persion curves, while only the discrete frequencies can be measured by ODS measurement. In addition, SMAW
measurements are easier to implement since fewer 3D accelerometers are required. The sensor distribution in ODS measure-
ment is relatively more complex, and the number of accelerometers necessary is determined by the expected wavenumber
resolution.
5.2. The effectiveness of ODS measurement and SMAW measurement in field track

The experimental and simulation results above have indicated that ODS measurement and SMAW measurement are cap-
able of identifying the coupled vibration modes and deriving the wave dispersion characteristics of a free rail. In this section,
Fig. 16. Comparison of the group velocity dispersion curve between SMAW measurement and FE simulation: ( ) measurement; ( ) simulation.
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we applied these two experimental methods in field railway tracks to evaluate their effectiveness on rails with real boundary
conditions.

The experimental setup is shown in Fig. 17. The track without visible defect is in Railway Testing center Faurei, Romania.
The UIC60 E1 rail was constrained by Vossloh W14 fastenings on prestressed monoblock sleepers every 0.6 m. No joints,
welds and crossings are nearby. The track can thus be considered as effectively infinite. Eleven 3D accelerometers (PCB
356B21, denoted as 1–11 in Fig. 17) were used to measure the rail vibrations under the impact of the hammer. Accelerom-
eters 1–7 were glued onto the rail head on the field side. Among them, accelerometers 1 and 4 were above the sleeper (called
on-support below); accelerometers 2 and 6 were at the mid-span of the rail; and accelerometers 3, 5 and 7 were at the
quarter-span. Accelerometers 8 and 10 were glued onto the rail web, and accelerometers 9 and 11 were glued onto the rail
foot.

Fig. 18 shows the measured vertical FRFs at mid-span (Position 2) and on-support (Position 4). The FRFs in form of recep-
tance are calculated by the measured accelerations and hammer forces. From the FRF, the track appears to have quite stiff
railpads [13]. A series of peaks and dips were observed in the FRFs, which correspond to the track resonance or anti-
resonance modes [5,22,24]. Among them, one peak at 1240 Hz (as indicated by the dashed line) may correspond to rail ver-
tical pinned–pinned resonance [5,24], which is the vertical banding mode with a wavelength of twice the sleeper space; see
the mode shape in Fig. 19a. To identify the rail modes corresponding to this peak, the ODS at 1240 Hz from accelerometers 1–
7 was derived and fitted by a sine curve, as shown in Fig. 19b. The shape of the measured ODS agrees well with the mode
shapes of the pinned–pinned resonance, indicating that the peak at 1240 Hz corresponds to the pinned–pinned resonance.
From this example, ODS measurement is a possible method to identify rail vibration modes in field tracks. It is worth noting
that the rail in field tracks has mostly propagating waves instead of the standing waves. Due to the track damping, the
wavenumbers of the propagating waves have both the real and imaginary parts. The identification of these wave modes
requires to consider both their real and imaginary parts from ODS measurement. These potentially make it more challenging
to identify the waves by ODS measurement in the field track.

The WPSs for vertical signals at accelerometers 1, 4 and 7 are shown in Fig. 20a, 20b and 20c, respectively. The excitation
position of the hammer was as close as possible to accelerometer 1. Fig. 20 shows that the wave envelope propagated from
Fig. 17. Experimental setup of ODS and SMAW measurements in the field track.

Fig. 18. Measured vertical FRFs at mid-span and on-support. The black dashed line indicates the frequency at 1240 Hz.
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accelerometer 1 to accelerometer 7, and its shape changed during this process due to wave dispersion. Compared to the
results of the free rail in Fig. 13, wave reflection was not observed in the field track, which should be caused by track damp-
ing that significantly attenuates the vibrational waves. This result also shows the advantage of the SMAW approach over the
single-acceleration wavelet approach, which does not depend on the reflection signal from the rail ends to measure the
group velocities. In addition, the wave envelope in the field track concentrates at a higher frequency range above
Fig. 19. Mode shape and ODS of pinned–pinned resonance. (a) Mode shape of pinned–pinned resonance; (b) ( ) Measured ODS at 1240 Hz; ( )
sinusoidal curving fitting of ODS.

Fig. 20. WPSs of vertical signals at (a) accelerometer 1, (b) accelerometer 4, and (c) accelerometer 7.
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2500 Hz, as indicated by the white dashed rectangle in Fig. 20, while that of the free rail concentrates at 200 Hz-5 kHz. This
may indicate that the support stiffness of the rail in the field track significantly suppresses rail vibrations at a lower fre-
quency than 2500 Hz and leads to a higher decay rate. Using the 3D FE track model developed in [13], numerical simulation
results indicated that the velocity signal is more sensitive to the rail vibration at lower frequencies than the acceleration sig-
nal. If the rail vibration at lower frequencies is of significant interest, the SMAW measurement of velocity can be better than
that of acceleration.

In summary, this section presents preliminary results of ODS measurements at vertical pinned–pinned resonance peaks
and SMAW measurements of vertical bending waves in field tracks. From these results, ODS measurements can be used to
identify vibration modes and SWAM measurements can be applied for the wave propagation and dispersion analysis of the
rail in field tracks. More experimental evidence may be needed to support the conclusions, which will be provided in future
work.

6. Conclusions and future work

In this paper, we present a solution method based on FE modeling to predict the multimodal dispersive waves in a free
rail at a frequency range of 0–5 kHz. Six types of waves are extracted in the vertical, longitudinal and lateral directions. The
phase and group velocities of these waves are derived and discussed in detail and provide useful information to understand
wave propagation and dispersion along the rail. Their modal behavior and wavenumber-frequency dispersion relations are
also obtained and are found to be similar to the simulation results in the literature [9,12].

The ODS measurement is conducted to distinguish between different types of wave modes. Experimental results indicate
that all six types of wave modes are identified by the ODS. Good agreement is achieved between the simulated mode shapes
and the measured ODSs. The wavenumber-frequency dispersion relations are also derived by postprocessing the ODS results
and have the largest deviation of only 3.8% compared with the simulated ones.

An SMAW approach is developed and applied to study the dispersive waves in the free rail. The propagation and disper-
sion of the vertical, longitudinal and lateral waves are measured from the WPSs. An algorithm is also developed to estimate
the group velocities from the WPSs. Good quantitative agreement is achieved between the simulated and measured results
of the vertical bending waves, longitudinal compression waves and lateral bending waves, indicating that the 3D FE model
can accurately predict the propagation and dispersion of waves in a free rail.

In summary, this work contributes to a better understanding of free rail vibrations and illustrates the effectiveness of the
ODS measurement for rail modal identification and SMAWmeasurement for wave dispersion analysis. For the ODS measure-
ment, more accelerometers could be mounted in the longitudinal direction to obtain higher spatial resolution. More
accelerometers could also be used on each cross-section to capture the cross-section deformation of the wave modes.
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Appendix A. Influencing factors of the numerical simulation

In the appendix, three influencing factors of FE simulation on obtaining wave dispersion relations, meshing, rail lengths
and rail heights, are studied.

Meshing

Three cross-section discretization variation schemes are employed. The rail cross-section profile is discretized with equal
element edge sizes of 16 mm, 8 mm and 4 mm. The longitudinal element sizes are varied, including 50 mm, 20 mm and
10 mm. Five simulation cases are tested and listed in Table A1.
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Table A1
Description of simulation cases.

Case Cross-section discretization size (mm) Longitudinal size (mm)

1 16 20
2 8 20
3 4 20
4 4 50
5 4 10
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Fig. A1. Dispersion curves of different (a) cross-section discretization size case 1 (—); case 2 ( ); case 3 ( ) (b) longitudinal element size case 3 (—); case
4 ( ); case 5 ( ).
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Fig. A1a shows the results of cases 1, 2, and 3 to study the influence of the cross-section discretization size. For cases 2 and
3, the wavenumber-frequency curves overlap almost completely with each other, with web 2nd bending waves (VI) having
the largest deviation of 3.6%. Further finer mesh is advisable to improve the accuracy for waves (VI). Considerable differences
up to 10.8% between cases 1 and 3 are observed for vertical bending waves (I), lateral bending waves (III), lateral torsion
waves (IV), web 1st bending waves (V), and web 2nd bending waves (VI) when the frequencies are higher than 1711 Hz,
3756 Hz, 2657 Hz, 1584 and 4209 Hz, respectively, where significant cross-section deformations for them have been
observed in Fig. 3. Different from other types of waves, longitudinal compression waves (II) are not sensitive to this mesh
difference since no cross-section deformation occurs below 5 kHz (see Fig. 3).

The results of cases 3, 4, and 5 are shown in Fig. A1b to determine the influence of the longitudinal element size. The
wavenumber-frequency curves of cases 3 and 5 overlap almost completely with each other, with the largest deviation being
2.5%. Significant differences up to 21.2% between cases 4 and 5 are observed for vertical bending waves (I), lateral bending
waves (III), lateral torsion waves (IV), and web 1st bending waves (V) when the wavenumber is higher than approximately
10 rad/m. Longitudinal compression waves (II) and web 2nd bending waves (VI) whose maximum wavenumbers up to 5 kHz
are below 10 rad/m are not sensitive to longitudinal element size. The reason is that the longitudinal element size determi-
nes the wavenumber resolution and thus has a more significant influence on waves with larger wavenumbers.

Overall, longitudinal compression waves (II) are influenced neither by cross-section discretization size nor by longitudinal
element size. Web 2nd bending waves (VI) are mainly affected by the former. The other four waves, vertical bending waves
(I), lateral bending waves (III), lateral torsion waves (IV), and web 1st bending waves (V), are all sensitive to both factors.
Additionally, if the allowable error is not larger than 3.6%, a cross-section discretization size of 8 mm and a longitudinal ele-
ment size of 20 mm can be a good compromise between the accuracy and computation time for studying the dispersive
waves in the rail in the frequency range of 0–5 kHz.
Rail length

Three different rail lengths of 15 m, 10 m, and 5 m are studied in the FE model. All three models use a nominal UIC 54E1
rail profile, and a cross-sectional mesh size of 4 mm and longitudinal element size of 10 mm are applied to obtain the best
accuracy. The results of these three cases are shown in Fig. A2. The wavenumber-frequency curves are almost identical.
Fig. A2b shows discrete wavenumber-frequency points (corresponding to characteristic modes) of longitudinal compression
waves (II). In the same frequency range, more points occur with longer rail.
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Overall, the rail length does not influence the dispersion relations of the rail but changes the number of characteristic
modes. Therefore, from the experimental point of review, we can conclude that a rail length (e.g., 4.97 m in this paper) is
appropriate to derive dispersion curves of the rail. However, it should be noted that rail vibration modes will be influenced
by the choice of different rail lengths.
Rail height

A 4.97 m rail, taken from the Dutch railway after long-term service, was measured in 3D with a HandyScan (see Fig. A3a).
The precision of the HandyScan is 30 mm in arbitrary directions. The measured rail is shown in Fig. A3b and compared with
the nominal UIC 54E1 rail in Fig. A4a. The most significant difference is the rail head height, with the measured height being
5.8 mm lower than the nominal height. The rail web and rail foot show little difference between the measured and nominal
profiles.

The measured rail profile (called ‘Worn 10 below) and nominal UIC 54E1 profile (called ‘Nominal’ below) are both used as
inputs to the FE models. To further study the influence of rail height, a reduction of 12 mm (called ‘Worn 20 below) compared
to nominal UIC 54E1 (see Fig. A4a) is also modeled. The model length is 4.97 m, a cross-section mesh size of 4 mm and a
longitudinal element size of 10 mm are applied. The results of these three cases are shown in Fig. A4b. The most significant
differences in the wavenumber-frequency curves are observed for web 2nd bending waves (VI), with the largest deviation of
10.4% between nominal and ‘Worn 20. Visible differences occur at higher frequencies for lateral bending waves (III) and tor-
sion waves (IV) and cut-on frequencies of web 1st bending waves (V). For these three cases, the wavenumber-frequency
curves of vertical bending waves (I) and longitudinal compression waves (II) agree with each other well.

Overall, the four types of lateral waves are all sensitive to rail height degradation because considerable cross-section
deformations are observed in Fig. 3. Therefore, for research on rolling noise problems that are strongly influenced by rail lat-
eral vibration, it is advisable to model the rail with measured rail height to correlate numerical results better with field noise
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measurements. Longitudinal compression waves (II) are not influenced by different rail heights because of the absence of
cross-section deformation below 5 kHz. Vertical bending waves (I) are not sensitive to rail heights because cross-section
deformation of these waves mainly occurs in the rail foot, which is almost identical in the three cases. The small difference
between them in the whole frequency range comes from the different vertical area moments of the cross-sections.
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