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Abstract
A train-borne laser Doppler vibrometer (LDV) directly measures the dynamic
response of railway track components from a moving train, which has the
potential to complement existing train-borne technologies for railway trackmon-
itoring. This paper proposes a holistic methodology to characterize train-borne
LDVmeasurements by combining computer-aided approaches and real-lifemea-
surements. The focus is on the speed-dependent characteristics because the
train speed affects the intensity of railway sleeper vibrations and the intensity
of speckle noise, which further affects the quality and usability of the mea-
sured signals. First, numerical models are established and validated to simulate
sleeper vibrations and speckle noise separately. Then, a vibration–noise sep-
aration method is proposed to effectively extract speckle noise and structural
vibrations from LDV signals measured at different speeds. The parameters of
the separation method are tuned using simulation signals. The method is then
validated using laboratory measurements in a vehicle-track test rig and applied
to field measurements on a railway track in Rotterdam, the Netherlands. Fur-
ther, the speed-dependent characteristics of train-borne LDV measurement are
determined by analyzing the competition between sleeper vibrations and speckle
noise at different speeds. Simulation and measurement results show that an
optimal speed range yields the highest signal-to-noise ratio, which varies for dif-
ferent track structures,measurement configurations, and operational conditions.
The findings demonstrate the potential of train-borne LDV for large-scale rail
infrastructure monitoring.

1 INTRODUCTION

The dynamic properties of railway track structures can
affect the load-bearing capacity of rail infrastructure, the
interaction between trains and tracks, and the safety of
operations. Due to train load and aging, track dynamic
properties degrade over time and deviate over different
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locations. Thus, monitoring these properties for well-
informed, effective, and efficient track maintenance is
essential (Wang et al., 2016). Since a running train is a
natural source to excite the dynamic response of railway
tracks over a broad frequency band, vibration measure-
ment under operational conditions is a preferred approach
to assess the dynamic properties of railway tracks.
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Existing vibration-based techniques for monitoring rail-
way track dynamic properties can be divided into trackside
and train-borne vibration measurements. In the former
category, sensors are usually mounted on rails (Yue et al.,
2016), sleepers (Le Pen et al., 2016), ballast (Liu et al.,
2021), or concrete slabs (Zhang et al., 2021) to measure
their dynamic response under train passage and to support
the identification of track properties. However, these tech-
niques are cost-prohibitive for large-scale infrastructure
monitoring, so they are usually applied at hot spots, such
as joints (Yang et al., 2018) and crossings (Boogaard et al.,
2018; Shen et al., 2019). In the category of train-borne mea-
surements, sensors aremounted on trains, such as on their
axle boxes or bogie frames, to detect anomalies in railway
tracks (Bocciolone et al., 2007; Li et al., 2022; Salvador et al.,
2016). These techniques are effective in detecting anoma-
lies on rails, such as rail surface defects (Li et al., 2015;
Li & Shi, 2019), degraded joints (Molodova et al., 2016),
poor-quality welds (Molodova et al., 2008), and degraded
crossings (Wei et al., 2017). In recent years, methods have
been developed to utilize train vibrations to monitor track
layers below rails, such as hanging sleepers and mud-
pumping locations (Berggren et al., 2014; Sresakoolchai &
Kaewunruen, 2022).
A laser Doppler vibrometer (LDV) is a noncontact

sensing instrument that measures vibration velocity by
utilizing Doppler frequency shift. It can provide high accu-
racy and sensitivity for vibration measurements over a
wide range of frequencies (Lutzmann et al., 2011). LDV has
been widely applied to engineering structures for modal
analysis and damage detection (Lutzmann et al., 2011;
Rothberg et al., 2017), while in most applications, the laser
spot measures at discrete points (Muramatsu et al., 2020;
Siringoringo & Fujino, 2009) or along a closed path (Chen
et al., 2018; Di Maio et al., 2021). A train-borne LDV can
target its laser spot on tracks and directly measure track
vibrations in response to the moving train. In simulation
studies, train-borne LDVs are used to identify bridge mode
shapes (OBrien &Malekjafarian, 2016) and estimate trans-
fer functions of track structures (Zeng, Núñez, et al., 2023).
In experimental studies, train-borne LDVs measure rail
vibrations to identify rail bendingmodes (Kaynardag et al.,
2021) and detect welds (Kaynardag et al., 2023).
Many existing technologies rely on train vibrations to

indirectly sense track behaviors, which is challenging for
monitoring track layers below rails since their responses
decay and mix with those of other train-track components
as they are transmitted to sensors on trains. In contrast,
a train-borne LDV can directly measure the vibration
of track layers below rails, for example, railway sleep-
ers. Train-borne LDV is not in a position to compete
with existing technologies but to provide purer informa-
tion about the dynamic behavior of track structures, thus
enabling more effective rail infrastructure monitoring.

However, train-borne LDV is still a fairly new technology
with limited field testing. To fill the gaps for large-scale
applications, more analysis is needed. A major factor of
concern is train speed, which can affect train-borne LDV
measurements in two aspects.

(1) Influence of train speeds on track dynamics. Track
vibrations are excited by wheel-rail contact forces,
including quasi-static components due to moving
loads and dynamic components due to track irreg-
ularities (Milne et al., 2017). As the train speed
increases, wheel passage and sleeper passage frequen-
cies increase linearly, and the corresponding track
response first increases and then may decrease after
resonance (Auersch, 2006; Le Pen et al., 2016; Yue
et al., 2017). For the dynamic response due to irreg-
ularities, its frequencies increase linearly with the
increasing train speed, while the track vibration ampli-
tude increases first fast and then slowly (Bian et al.,
2015). Therefore, the dependency of track vibrations
on train speeds is affected by several different mecha-
nisms simultaneously, leading to a complex nonlinear
behavior. In addition, a train-borne LDV measures
a track component only when the laser spot scans
its surface. As the train speed increases, the signal
length becomes shorter, which may lead to more
uncertainties in the measured response.

(2) Influence of train speeds on speckle noise. Speckle noise
originates from speckle patterns that appear when a
laser beam is scattered from an optically rough surface
(Martin & Rothberg, 2009). Speckle noise appears as
irregular and random spikes or dropouts in an LDV
signal and as a broadband noise floor in its spectrum
(Rothberg et al., 2017). The severity of speckle noise
depends on the properties of the laser and the target
surface as well as the change of speckle patterns due
to the in-plane motion of the laser spot on the tar-
get surface (Rothberg et al., 2017). The speed of such
in-plane motion is reported to be the most influential
factor in speckle noise behavior (Martarelli & Ewins,
2006). Simulations and experiments show that the
amplitude of speckle noise increases with the increase
in in-plane speeds (Jin et al., 2022; Rahimi et al.,
2014; Sracic & Allen, 2009). In most LDV applications,
speckle noise is mitigated through discrete-point mea-
surements (Revel et al., 2011; Sels et al., 2019), repeated
closed-path scanning (Allen& Sracic, 2010; Stanbridge
et al., 2004), or surface treatment (Xu et al., 2017).How-
ever, these solutions are incompatible with train-borne
LDV that scans the surface of railway tracks along
an open path. Many conventional filtering methods
have been tried to handle speckle noise, for example,
median filter (Arruda et al., 1996), low-pass filter (Stan-
bridge et al., 2004), and wavelet denoising (Katicha
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et al., 2014). However, their performance has been
found unsatisfactory (Jin et al., 2022; Stanbridge et al.,
2004).

Therefore, specialized signal processing methods are
needed to reduce speckle noise in LDV signals. Several
methods have been developed for measurements at small
in-plane speeds (0–0.1 m/s), in which speckle noise is
detected and replaced through interpolation or prediction
(Aranchuk et al., 2006; Lv et al., 2019; Wang et al., 2021).
Recently, a few methods have been developed to mitigate
speckle noise at higher in-plane speeds. Low-pass filtering
and oscillation detrending are combined, and it is tested at
different speeds (0.1 m/s, 10 m/s, 20 m/s) for a case of har-
monic vibrations (Jin & Li, 2022). An ensemble empirical
mode decomposition method is proposed and validated at
fixed speeds (0.85 m/s and 10 km/h) in two experimental
cases (Jin et al., 2022). However, selecting parameters, such
as the number of intrinsicmode functions, requires human
judgment and can vary for different experiments and
speeds. A three-step speckle noise reduction framework
is proposed and validated at different speeds (0.5 km/h,
5 km/h, 20 km/h), in which different parameters are used
for different speeds (Zeng et al., 2022). There is still a lack
of effective methods to reduce speckle noise adaptively for
LDV signals measured at different speeds.
The variation of track vibration and speckle noise with

respect to train speed affects the quality and usability of
train-borne LDV signals. To the best of our knowledge, no
published research has investigated the speed-dependent
characteristics of a train-borne LDV for track vibration
measurements. In this context, the main contributions of
this paper are given as follows.

(1) This paper presents the world’s first field test of a
train-borne LDV for measuring railway sleepers on an
operational railway line. The effective extraction of the
sleeper vibration demonstrates the applicability of the
technology to large-scale monitoring of railway tracks
under operational conditions.

(2) A holistic methodology combining computer-aided
approaches and real-life measurements is proposed
to characterize train-borne LDV measurements and
determine the speed-dependent characteristics of their
signal-to-noise ratio (SNR). Numerical models are
used to simulate the sleeper vibration and speckle
noise separately. Laboratory and field measurements
further test the train-borne LDV technology under
well-controlled and real-field conditions, respectively.

(3) A specialized method is developed to separate speckle
noise from structural vibrations in LDV signals mea-
sured at different speeds. The parameters are tuned
with simulated signals, and the performance is ver-

F IGURE 1 Methodology for characterizing train-borne laser
Doppler vibrometer (LDV).

ified with laboratory measurements. The separation
method using the same parameters works robustly
under different scenarios.

Figure 1 illustrates the methodology of this research.
In Part 1, numerical models of train-track-LDV dynam-
ics and speckle noise are established and validated with
laboratory measurements. This provides insights into the
train-borne LDV system prior to field tests and enables
sleeper vibrations and speckle noise to be characterized
separately without interferingwith each other. Since struc-
tural vibration and speckle noise are mixed in real-life
measurements, Part 2 presents a signal processing method
to separate them effectively at different train speeds. The
parameters of the separation method are tuned using sim-
ulation signals, and the method is then validated with
laboratory measurements under well-controlled and well-
observed conditions. In Part 3, field measurements of
sleeper vibration using a train-borne LDV are performed in
Rotterdam, the Netherlands, and the validated separation
method is applied to the measured signals. In Part 4, the
speed-dependent characteristics are investigated based on
the simulations, laboratory, and field measurements. Sec-
tions 2–5 of this paper present Parts 1–4, respectively, and
conclusions are drawn at the end.

2 SIMULATION AND VALIDATION

2.1 Numerical modeling

This research first usesmodeling and simulation to charac-
terize train-borne LDVmeasurement and generate signals
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F IGURE 2 A train-track laser Doppler vibrometer (LDV)
model.

of sleeper vibration and speckle noise. A vertical train-
track model is built to simulate sleeper vibration measure-
ment using a train-borne LDV (Zeng, Núñez, et al., 2023),
as shown in Figure 2. The train is modeled as a quarter
vehicle as follows,

𝑚v�̈�v(𝑡) + 𝑘v [𝑧v(𝑡) − 𝑧w(𝑡)] + 𝑐v [�̇�v(𝑡) − �̇�w(𝑡)] = 0 (1)

𝑚w�̈�w − 𝑘v [𝑧v(𝑡) − 𝑧w(𝑡)] − 𝑐v [�̇�v(𝑡) − �̇�w(𝑡)]

+𝐹c(𝑡) = 0 (2)

where mv and mw are the masses of the vehicle and the
wheel, respectively, zv and zw are their vertical displace-
ments, respectively, kv and cv are the stiffness and damping
of the suspension, respectively, and Fc is the wheel-rail
contact force.
The track consists of a rail discretely supported by

ns rigid sleepers on a fixed foundation. The equation of
motion of the i-th sleeper is:

𝑚s�̈�s𝑖(𝑡) − 𝑘r𝑖 [𝑧r (𝑥s𝑖, 𝑡) − 𝑧s𝑖(𝑡)] − 𝑐r𝑖 [�̇�r (𝑥s𝑖, 𝑡) − �̇�s𝑖(𝑡)]

+ 𝑘s𝑖𝑧s𝑖(𝑡) + 𝑐s𝑖�̇�s𝑖(𝑡) = 0 (3)

where ms is the mass of the sleeper, zsi is its vertical dis-
placement, kri and cri are the stiffness and damping of
the rail pad above the i-th sleeper, respectively, ksi and
csi are the stiffness and damping of the ballast below the
i-th sleeper, respectively, zr(xsi, t) is the vertical displace-
ment of the rail at the position of the i-th sleeper, that is,
xsi = (i−1/2)ds with ds denoting the sleeper spacing.
The rail is represented by a simply supported Euler–

Bernoulli beam, and its displacement at position x and time
t is characterized by (Zhai, 2020),

𝐸𝐼
𝜕4𝑧r (𝑥, 𝑡)

𝜕𝑥4
+ 𝑚r

𝜕2𝑧r (𝑥, 𝑡)

𝜕𝑡2
= 𝐹c(𝑡)𝛿 (𝑥 − 𝑥c(𝑡))

−

𝑛s∑
𝑖=1

𝑘r𝑖 [𝑧r (𝑥s𝑖, 𝑡) − 𝑧s𝑖(𝑡)] 𝛿 (𝑥 − 𝑥s𝑖)

F IGURE 3 (a) Working principle of a laser Doppler
vibrometer (LDV) measuring an optically rough surface. (b)
Simulation of speckle translation.

−

𝑛s∑
𝑖=1

𝑐r𝑖 [�̇�r (𝑥s𝑖, 𝑡) − �̇�s𝑖(𝑡)]𝛿 (𝑥 − 𝑥s𝑖) (4)

where E and I are the elastic modulus and second area
moment of the rail, respectively, mr is the mass per unit
length of the rail, δ(·) is the Dirac impulse function, xc
is the position of the wheel running along the track, that
is, xc(t) = x0+vt with v denoting the train speed and x0
denoting the initial position.
Hertz’s theory is employed to calculate the wheel-rail

contact force as follows (Zhai, 2020),

𝐹c(𝑡) =

⎧⎪⎨⎪⎩
0 when𝑧w(𝑡) − 𝑧r (𝑥c, 𝑡) − 𝑧e (𝑥c) < 0(

1

𝐺
[𝑧w(𝑡) − 𝑧r (𝑥c, 𝑡) − 𝑧e (𝑥c)]

)3∕2

otherwise
(5)

where the contact coefficient G is 4.57×rw−0.149×10−8
m/N2/3 with rw denoting the wheel radius, and ze is the
rail irregularity.
Equation (4) is converted to second-order ordinary dif-

ferential equations according to the Ritz method (Zhai,
2020), as presented in Appendix A. Then, they are solved
together with Equations (1)–(3) numerically using the
Newmark-β method (Newmark, 1959), while the contact
force is updated at each time step according to Equa-
tion (5).
In Figure 2, an LDV is rigidly connected to the vehi-

cle with its laser spot targeted onto the sleepers. The laser
spot has an offset Δx from the wheel-rail contact point.
Assuming that the vibration of the LDV can be perfectly
removed from the LDV signal (Rothberg&Tirabassi, 2012),
the vibration of the i-th sleeper is measured when the laser
spot is on top of it, as expressed below.

�̇�(𝑡) = �̇�s𝑖(𝑡)when 𝑥s𝑖 −
𝑑

2
< 𝑣𝑡 + Δ𝑥 < 𝑥s𝑖 +

𝑑

2
(6)

where d is the sleeper width.
Figure 3a shows the working principle of an LDV. A

laser beam is projected onto a target surface, and the
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ZENG et al. 5

scattered beam is collected on a photodetector. Due to
the roughness of the target surface, the scattered light
consists of coherent waves that interfere with each other,
forming speckle patterns on the photodetector (Rothberg
& Halkon, 2004). This phenomenon is inevitable since the
surfaces of railway components are optically rough. Each
speckle is then heterodyned with an additional reference
beam, and the intensity is converted to a signal with the
following frequency (Martarelli, 2001).

𝜔D(𝑡) = 𝜔R +
4𝜋

𝜆
�̇�(𝑡) +

𝑑𝜃M
𝑑𝑡

(𝑡) (7)

where ωR is an artificial frequency shift, λ is the wave-
length of the laser,

.
𝑧(𝑡) is the vibration velocity of the

target, and θM is a phase angle expressed as follows:

𝜃M = arctan

[∑𝐾

𝑘=1
𝑎𝑘

√
𝐼S𝑘 sin (𝜃R − 𝜃S𝑘)∑𝐾

𝑘=1
𝑎𝑘

√
𝐼S𝑘 cos (𝜃R − 𝜃S𝑘)

]
(8)

where K is the total number of speckles, ak is the area
of the k-th speckle on the photodetector, ISk and θSk are
the intensity and phase of the k-th speckle, respectively,
and θR is the phase of the reference beam. According
to Equation (7), the speckle noise caused by the phase
change rate dθM/dt when measuring the target vibration.
𝑧(𝑡) is expressed as follows:

𝜉(𝑡) =
𝜆

4𝜋
⋅
𝑑𝜃M
𝑑𝑡

(𝑡) (9)

For train-borne LDVmeasurements, speckle translation
due to the in-plane motion between the laser spot and the
target surface plays a dominant role in dθM/dt (Martin &
Rothberg, 2009). The space and time correlation lengths
of the speckles, lC and τC, are two important parameters
depending on the laser properties and measurement setup
(Asakura & Takai, 1981). The space correlation length lC
characterizes the size of each speckle, within which ISk
and θSk are constants following a negative exponential
distribution and a uniform distribution, respectively (Den-
man et al., 1996). The time correlation length τC describes
the time length for the speckle pattern to advance by one
speckle, which is inversely proportional to the in-plane
speed v (Asakura & Takai, 1981). More details of the model
can be found in Appendix B.
As shown in Figure 3b, each speckle is modeled as a

square with m × n grids (Rothberg, 2006). A full speckle
transition is divided into m partial transitions, and differ-
ent columns are randomly misaligned along the n grids to
account for speckle irregularities. The photodetector is of
size a · lC × a · lC, and the intensity and phase of the refer-
ence beam on the photodetector, IR and θR, are assumed
constant (Rothberg, 2006). In the simulation of speckle

F IGURE 4 V-Track test rig instrumented with a laser Doppler
vibrometer (LDV).

translation, the photodetector starts from an initial posi-
tion and moves at the constant speed of lC/τC. At each
partial transition, indexed by the j-th step, the overlap-
ping area between the photodetector and each speckle is
obtained, and the phase θM(j) is calculated according to
Equation (8). Then, the phase change rate at the j-th step
is estimated as follows:

𝑑𝜃M
𝑑𝑡

(𝑗) =
Δ𝜃M (𝑗)

Δ𝑡
=

𝜃M (𝑗) − 𝜃M (𝑗 − 1)

(𝜏C∕𝑚)
(10)

where ΔθM should be constrained to be less than π/2.
Based on the simulated phase change rates, the speckle

noise ξ(t) is obtained according to Equation (9). A low-pass
finite impulse response filter with cut-off frequency fC is
applied to ξ(t) to resemble the signal acquisition process.

2.2 Laboratory measurement

Laboratory measurements play an important role in this
research to validate the numerical models and the sig-
nal processing method under well-controlled and well-
observed conditions. They are performed in the vehicle-
track test rig of TU Delft named V-Track (Naeimi et al.,
2018), as shown in Figure 4. The scaled track structure is
composed of rails, sleepers, and track slabs. Rails are sup-
ported by sleepers through fasteners and rail pads, and
sleepers are assembled on track slabs through bolts and
sleeper pads. A wheel running along the rail is loaded by
suspensions. On top of the suspension, a vehicle is con-
nected to a beammounted with a Polytec RSV-150 LDV. Its
laser beam is reflected onto the sleepers by a mirror fixed
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6 ZENG et al.

on the end of the beam. As the beam rotates, the vehicle
moves forward, the wheel rolls along the track, and the
LDV scans the track surface. This enables the sleeper vibra-
tion to be excited by the wheel and then measured by the
train-borne LDV. At the same time, the angular position
of the beam is measured, which can be used to determine
the position of the wheel and the laser spot. Moreover,
PCB 356B21 accelerometers are installed on some sleepers
to measure their vertical accelerations in response to the
passing vehicle. An additional accelerometer is installed
on the mirror to capture its effect on the LDV signal.

2.3 Model validation

Table A1 lists the parameters for simulating the vehicle-
track dynamics. The vertical irregularity of the rail ze
is generated by applying a low-pass Butterworth infinite
impulse response filter to Gaussian white noise (Zeng,
Núñez, et al., 2023). Such an artificial spectrum is defined
by a passband wavelength λpass, a stopband wavelength
λstop, and a stopband attenuation hstop, and it is smoothly
monotonic and maximally flat in the passband. It resem-
bles the decay pattern of real-life track irregularity spec-
trum and enables thewheel-rail interaction to cover awide
range of frequencies.
The track dynamics model is validated using the track-

side accelerometer measurements in V-Track. Figure 5a,b
show the vibrations of the center sleeper simulated at
two different vehicle speeds, respectively. The trackside
measurements are compared with the simulation results
after conversion from acceleration to velocity through
frequency-domain integration (Brandt & Brincker, 2014).
It can be seen that the amplitude and frequency of the
sleeper vibration are larger at a higher speed. The sim-
ulation results are similar to the measurements in both
time and frequency domains, but their amplitudes do not
exactly match, especially at the higher speed, mainly due
to the simplification of the model and the rail irregularity.
Despite such differences, the model is considered suitable
for simulating rigid-body vibrations of sleepers in a multi-
layer track structure under amoving train load. Themodel
is fast to solve numerically, and its parameters are easy
to tune due to the limited number. Using a more com-
plex train-track model or more complex rail irregularity
spectrum may yield a better match between simulations
and the measurements. However, this requires additional
efforts in modeling, parameter tuning, and computation.
In cases of selecting from models of different complex-
ity, a comparative analysis of their performance and
effectiveness for the specific application may be necessary.
The speckle translationmodel is validated using speckle

noise separated from LDV signals in laboratory measure-

ments (the separation method will be introduced in Sec-
tion 3). The simulation parameters are listed in Table B1,
and the simulated speckle noise at two vehicle speeds is
compared with the measurements in Figure 5c,d. It can be
seen that, at a higher speed, spikes appear more frequently
with greater amplitudes and shorter durations. The simu-
lated speckle noise behaves similarly to the measurements
in terms of the interval, amplitude, and duration of spikes.
Meanwhile, good consistency can be observed over a wide
frequency range. The simulated and measured speckle
noise at the two speeds exhibit an average deviation of 8.4%
in their standard deviations in the time domain and an
average deviation of 10.6% in their means in the frequency
domain (0–10 kHz). It should be noted that the simu-
lation cannot exactly replicate the measurement due to
the randomness of speckle patterns. Instead, the statistical
agreement between them demonstrates the effectiveness
of the model in reproducing the speckle noise.

3 VIBRATION–NOISE SEPARATION

3.1 A signal processing method

In real-lifemeasurements, structural vibration and speckle
noise aremixed. Thus, effective signal processing is needed
to separate them. As introduced in Section 1, no existing
method can achieve this adaptively at different speeds. In
recent research (Zeng et al., 2022), spikes are first distin-
guished through a wavelet-based detection method. Then,
the detected spikes are replaced with estimates through
an autoregressive integrated moving average (ARIMA)-
based imputation method. Finally, the residual noise is
filtered out using a band-pass filter. However, the selected
parameters of this method vary at different speeds due to
the speed-dependent characteristics of spikes. To address
this problem, the method is adapted to extract speckle
noise and target vibration without the need to adjust its
parameters for different speeds.

Step 1. Perform one-level discrete Haar wavelet
decomposition and reconstruction (Amezquita-
Sanchez & Adeli, 2016; Karim & Adeli, 2002) to a
raw LDV signal x0(t) and calculate spike indicators
Rd(t) as follows:

𝑐𝐷1(𝑡)= DWTD [𝑥0(𝑡)] (11)

𝑅d(𝑡) = |IDWTD [𝑐𝐷1(𝑡)]| (12)

where DWTD[·] and IDWTD[·] represent forward and
inverse discrete wavelet transforms, respectively, and
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ZENG et al. 7

F IGURE 5 Comparisons between simulations and measurements. (a) Sleeper vibrations at 2 km/h; (b) sleeper vibrations at 12 km/h; (c)
speckle noise at 2 km/h; (d) speckle noise at 12 km/h.

cD1(t) is the detail coefficients. Then, find P% locations in
x0(t) with the largest spike indicators Rd(t) and label them
as large spikes.

Step 2. Define an ARIMA model with an autoregres-
sive order pA, a moving average order qA, and a
differencing order dA, denoted as ARIMA(pA, dA,
qA). Train the ARIMA model with x0(t) along the
forward direction, and replace the labeled points
sequentially with predictions from the ARIMA
model. Repeat the above training and replacement
process along the backward direction. Then, aver-
age the forward and backward replacements to
obtain the imputed signal x1(t). The noise compo-
nent (large spikes) is ξ1(t) = x0(t)−x1(t).

Step 3. Apply a band-pass filter (with the cut-off fre-
quency of fL and fH) and a high-pass filter (with
the same cut-off frequency fH) to x1(t), resulting in
the target vibration x2(t) and the noise component
(small spikes) ξ2(t). Finally, superpose ξ1(t) with
ξ2(t) as the total noise ξ(t) = ξ1(t)+ξ2(t).

The above separation method is illustrated in Figure 6.
Steps 1 and 2 aim to extract P% most influential points
(large spikes) from x0(t) into ξ1(t), which are usually
dominant over a broad frequency range and easier to be
separated through time-domain analysis. Specifically, Step
1 calculates spike indicators Rd(t) that represent the noise
component in x0(t) and then labels P% data points based
on their Rd(t). Step 2 then replaces the labeled spikes with
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8 ZENG et al.

F IGURE 6 Flowchart of the vibration–noise separation method.

predictions from the ARIMA models and takes the dif-
ference between the imputed signal x1(t) and the original
signal x0(t) as the large spikes ξ1(t). However, changes
in train speed lead to changes in spike characteristics. If
the actual percentage of large spikes is lower than P%,
for example, when the train speed is low, normal data
points may be labeled as spikes in Step 1. These points are
then replaced in Step 2 by predictions with similar ampli-
tude, thus not affecting ξ1(t) significantly. If the actual
percentage of large spikes is higher than P%, for example,
when the train speed is high, some less influential spikes
may be retained in x1(t). Since small spikes are usually at
high frequencies, they are filtered out through frequency-
domain analysis and then included in ξ2(t) in Step 3. By
combining ξ1(t) with ξ2(t), speckle noise is eventually
obtained.
The effectiveness of the separation method at various

speeds requires a proper selection of its parameters. The
most important is the percentage of labeled spikes P% in
Step 1, which affects the number of replacements in Step
2. The orders of the ARIMA model (pA, dA, qA) affect the
performance of imputation in Step 2. Based on the previ-
ous findings (Zeng et al., 2022), it is recommended to set
dA = 1 and qA = 1 since they provide good results at dif-
ferent speeds. The parameters P% and pA should be tuned
considering the separation performance and the compu-
tational cost over the desired range of speeds. This can
be achieved either quantitatively based on simulated sig-
nals or qualitatively through trial and observation based
on measured signals. Moreover, the cut-off frequencies fL
and fH in Step 3 are important for separating structural
vibrations from residual noise. It is recommended to set
them to the lowest and highest frequencies of interest for
the target structural vibration, respectively. Procedurally,
fL and fH can be defined after applying Steps 1 and 2. The
above vibration–noise separation method is deeply tied
to measurements with LDVs. In this paper, it is used for
the vibration measurement of railway sleepers, while it

can also be adapted for other applications of structural
vibration measurements using LDVs.

3.2 Parameter tuning with simulations

The simulation models in Section 2 can generate signals
of sleeper vibration and speckle noise at different speeds,
which makes it possible to quantify the performance
of the separation method and tune its parameters. For
each sleeper under a certain vehicle speed, the simulated
train-borne LDV signal is obtained by superposing the sim-
ulated sleeper vibration with the simulated speckle noise.
Then, the proposed separation method is applied to the
superposed signal, and the separated vibration and noise
components are compared with the original vibration and
noise signals, respectively. The root-mean-square (RMS)
errors and the Pearson correlation coefficient between
the separated components and the original signals are
calculated to quantify their deviations.
Figure 7a shows the separation performance for a single

sleeper using different P% in Step 1. “Raw” represents the
result without vibration–noise separation, which yields
the largest error and the lowest correlation. “Direct” rep-
resents applying solely the filter in Step 3 to the raw signal,
which separates some noise in the frequency domain. In
cases of P% > 0, the involvement of the time-domain sep-
aration in Steps 1 and 2 further improves the performance,
and P% in the range of 10%–40% provides low separation
errors and high correlation coefficients for both the
vibration and the noise at different speeds. When P% is too
small, large spikes cannot be effectively extracted in Step
1, so the errors are large. When P% is too large, too many
points need to be replaced, resulting in more imputation
errors. A similar analysis is performed for the order pA
in Step 2, as shown in Figure 7b. It can be seen that the
RMS error and correlation coefficient are not sensitive to
pA as long as pA > 5. However, pA significantly affects the
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ZENG et al. 9

F IGURE 7 Separation performance (when dA = 1, qA = 1, fL = 0 Hz, fH = 2000 Hz). (a) Different P% (when pA = 20); (b) different pA
(when P% = 25%).

computational cost, and the higher the pA, the longer the
CPU time (on Intel Xeon E5-2643 with 32 GB RAM).
In this paper, P% = 25% and pA = 20 are used as a

balance between the separation performance and compu-
tational cost. The method is then applied to simulations
of the nine sleepers in the middle of the track at differ-
ent speeds, and the mean and standard deviation of the
separation results over the nine sleepers are presented in
Table 1. It shows that the separated vibration and noise
components are highly correlated with the original sig-
nals. Such a high correlation holds at different speeds, and
the deviation between the different sleepers is small. This
demonstrates the effectiveness of the proposed separation
method at different train speeds.

3.3 Validation with laboratory
measurements

The separation method is validated with measurements
in V-Track. The same parameters in Steps 1 and 2 as Sec-
tion 3.2 (P%= 25%, pA = 20, dA = 1, qA = 1) are used. In Step
3, fL = 50 Hz is used to eliminate the effect of the mirror
vibration, and fH = 1500 Hz is used to capture the rigid-
body motion of the sleepers (Zeng, Shen, et al., 2023). The

TABLE 1 Separation performance at different speeds.

Correlation
coefficient of sleeper
vibration

Correlation
coefficient of speckle
noise

Speed
(km/h) Mean

Standard
deviation Mean

Standard
deviation

2 .882 .043 .943 .020
4 .782 .075 .949 .024
6 .805 .031 .959 .009
8 .804 .031 .971 .008
10 .849 .027 .974 .013
12 .846 .038 .970 .015
14 .816 .058 .958 .030
16 .828 .061 .962 .015
18 .807 .081 .960 .023
20 .801 .058 .969 .013

separation results for a typical sleeper at different speeds
are shown in Figure 8. As the speed increases, the sig-
nal length becomes shorter, and the frequency resolution
becomes lower. By comparing the raw and imputed sig-
nals, it can be seen that large spikes are separated after
Steps 1 and 2, while small spikes remain to be separated
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10 ZENG et al.

F IGURE 8 Separation results and comparisons with trackside measurements at different speeds. (a) 2 km/h, (b) 8 km/h, (c) 12 km/h.

in Step 3. Additionally, the mirror vibration dominates the
low frequencies and is filtered out in Step 3.
Generally, the separated noise is very close to that in

the raw signals. Meanwhile, the sleeper vibrations sep-
arated from the train-borne LDV signals are consistent
with those measured by the trackside accelerometer in
both time and frequency domains. These results demon-

strate the measuring capability of the train-borne LDV
and the effectiveness of the proposed method at differ-
ent speeds. Some residual noise can be noticed in the
separated sleeper vibration, which is less pronounced at
higher speeds due to increased vibration amplitude and
frequency. The deviations between the train-borne LDV
signals and the trackside accelerometer signals are caused
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ZENG et al. 11

by imperfect separation and the spatial deviations between
the laser spot and the accelerometers.
It should be noted that the train-borne LDV and the

trackside accelerometers measure both pass-by vibrations
(caused by the moving vehicle) and ambient vibrations in
the laboratory. The influence of ambient vibrations on the
fidelity of the pass-by vibration measurement is consid-
ered negligible in our case study since there are no major
vibration sources in the vicinity during the measurement.

4 APPLICATION TO FIELD
MEASUREMENTS

Since the above simulations and laboratory measurements
represent scaled and simplified vehicle-track systems, field
measurements are necessary to further test the train-
borne LDV technology and the vibration–noise separation
method in the real world. It is implemented on the CTO
measurement train of TU Delft, as shown in Figure 9a.
The same LDV used in the laboratory is installed in the
cabin, and its laser beam is targeted at sleepers (and bal-
last) through a hole in the cabin floor. Two accelerometers
(PCB 356B21) are installed on the LDV tomeasure its vibra-
tion, and a camera is used to record the trajectory of the
laser spot on track structures.
Since the vibration signals and the video frames are

stored separately at different sampling rates, they need to
be synchronized. We align them by using some unique
objects in the track (e.g., joints and crossings) as refer-
ences. These objects are identifiable in both signals, and
the alignments at different reference locations are further
averaged. The synchronization accuracy is sufficient in our
case study considering the short length of the signals (less
than 60 s per track section). If a long measurement (e.g.,
several hours) is considered, the synchronization becomes
more challenging since timing errors between different
systems accumulate and simply aligning signals is not suf-
ficient. In this case, more advanced strategies are needed
to tackle the challenges.
Themeasurements are conducted on an operational rail-

way track in Rotterdam, the Netherlands, as shown in
Figure 9b. It is a typical ballasted trackwith concrete sleep-
ers. The CTO train is pulled by a locomotive connected to
the LDV side. Themeasurements at speeds below 30 km/h
are focused on since higher speeds cause more significant
motion blur, which induces more challenges in accurately
positioning the laser spot on each individual sleeper.
Figure 9c and d show the results measured in two typ-

ical sections. The upper plots show the change in train
speedswith respect to sleeper numbers, inwhich the speed
is estimated by assuming a uniform sleeper spacing. The
LDV signal is cut into segments for each sleeper, and the

F IGURE 9 Field measurements. (a) CTO train instrumented
with a laser Doppler vibrometer (LDV); (b) train route and two
selected sections (aerial photographs used from GeoInformatie
Portaal of ProRail https://maps.prorail.nl/); (c) train speed and
spectrum of imputed signal for each sleeper in Section A; (d) train
speed and spectrum of imputed signal for each sleeper in Section B.

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13150 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [13/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://maps.prorail.nl/


12 ZENG et al.

vibration–noise separation method (with the same param-
eters in Steps 1 and 2 as in Sections 3.2 and 3.3) is applied to
each segment. The lower plots show by a colored strip the
Fourier spectrum of the imputed signal (after Steps 1 and
2) for each sleeper. It can be seen that the amplitude of the
sleeper vibration increases with the increase in speed. A
higher speed generatesmore excitations at higher frequen-
cies, thus leading to larger vibration responses at higher
frequencies. The dominant frequency of the sleeper vibra-
tion is generally below 300 Hz, which is consistent with
the frequency range of rigid-body motions and first-order
bending of in situ sleepers (Shen et al., 2021; Zeng, Shen,
et al., 2023). Therefore, fH = 300 Hz is used in Step 3. It is
noteworthy that fH differs significantly between the field
and laboratory measurements due to the different natural
frequencies of the sleepers. Additionally, fL = 80Hz is used
to eliminate the influence of the LDV vibration.
Two sleepers are further selected to showcase the

vibration–noise separation performance, as plotted in
Figure 10. Sleeper ① is measured at 6 km/h, where the
LDV vibration dominates the raw signal and the ampli-
tude of the extracted sleeper vibration is small. Sleeper ②

is measured at 21 km/h, and the amplitude and dominant
frequency of the sleeper vibration are significantly higher
than those of the LDV vibration. Meanwhile, the ampli-
tudes of the extracted sleeper vibration and speckle noise
are both larger than those of Sleeper①. In general, the pro-
posed separation method effectively reduces the speckle
noise in the raw signals and captures the dominant sleeper
vibrations at different speeds. Unfortunately, we were not
able to access the track to conduct tracksidemeasurements
to further verify the results.
It is worth noting that the same parameters for

vibration–noise separation in Steps 1 and 2work effectively
under different scenarios, including simulations (up to
20 km/h), laboratory measurements (up to 12 km/h), and
field measurements (up to 30 km/h). In addition, the per-
formance is not sensitive to the variation in signal length
due to the variation in speed. This reflects the generaliza-
tion capability of the proposed method, at least under the
tested scenarios and speeds.

5 SPEED-DEPENDENT
CHARACTERISTICS

SNR is a key indicator representing the quality and usabil-
ity of a measured signal. It quantifies how pronounced the
real vibration is with respect to the noise, calculated based
on their RMS values as follows:

F IGURE 10 Separation results of two sleepers. (a) Sample ①,
(b) Sample ②.
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ZENG et al. 13

𝑆𝑁𝑅 = 20 log10

(
RMS (�̇�(𝑡))

RMS (𝜉(𝑡))

)
(13)

To investigate the influence of train speed on sleeper
vibrations and speckle noise and further on the SNR of
train-borne LDV measurements, the SNRs at different
speeds are calculated based on the simulations, laboratory
measurements, and fieldmeasurements. In the simulation
scenario, sleeper vibrations and speckle noise are simu-
lated separately so the SNRs can be accurately obtained.
For the laboratory and field measurements, sleeper vibra-
tions and speckle noise are separated from the LDV signals
using the method in Section 3, and the SNR can only be an
estimation.

5.1 Simulations

In the simulation study, the stiffness and damping of rail
pads and ballast are assumed to follow Gaussian distri-
butions as a consideration of uncertainties in the track
properties. For each parameter, the mean is its nominal
value in Table A1, and the standard deviation is 5% of
the nominal value. Random numbers following these dis-
tributions are generated for each sleeper. Figure 11a first
shows the simulation results for the nine sleepers in the
middle of the track, in which the RMS value is calculated
based on the response of each sleeper when the wheel is
within±1.5 sleeper spacing from it. As the speed increases,
the sleeper vibration becomes larger, with the slope first
increasing and then decreasing, and the standard deviation
over the nine sleepers also increases. According to Equa-
tion (6), the train-borne LDV captures only a fragment
of the sleeper vibration response under the wheel pas-
sage, and the higher the speed, the shorter the fragment.
Figure 11a then shows the RMS values of the fragments
measured on the nine sleepers. The measured sleeper
vibrations increase with speed, following the same trend
as in the first plot. The standard deviation also increases
with increasing speed. The deviation between the sleepers
is more pronounced whenmeasuring with the train-borne
LDV, which reflects larger uncertainties due to the shorter
length of the measured sleeper response.
Then, nine simulations of speckle translation are per-

formed at each speed, corresponding to the measurements
on the nine sleepers. The results in Figure 11a show that the
RMS value of the speckle noise increases almost linearly
with the increasing speed while its standard deviation
becomes larger. Further, the SNR is calculated for each
sleeper, as shown in the last plot of Figure 11a. A significant
nonlinear behavior can be observed as a result of the com-
petition between the linear increase of the speckle noise
and the nonlinear increase of the sleeper vibration with

respect to the increasing speed. At low speeds, the sleeper
vibration is too small while the speckle noise increases
faster, so the SNR first decreases and reaches a local min-
imum at around 4 km/h. Then, as the sleeper vibration
increases more steeply than the speckle noise, the SNR
starts to increase and reaches a local maximum at 10–
15 km/h. Further, as the sleeper vibration increases more
slowly, the SNR drops gradually as the speed increases.

5.2 Laboratory measurements

The vibration–noise separation method is applied to mea-
surements in V-Track at different running laps (rotations
of the beam). The RMS values of the separated vibration
and speckle noise as well as the SNR are calculated for
each sleeper (excluding those near the joints). Figure 11b
shows their box plot distributions at different speeds. It
can be seen from the data points and their percentiles that
the sleeper vibration and speckle noise exhibit more sig-
nificant deviations between sleepers than the simulation
results in Figure 11a. Such a deviation is caused by uncer-
tainties in the sleeper dynamics, the track geometry, and
the laser speckle and becomes more pronounced as the
speed increases.
Despite the uncertainties, the mean and median in the

first plot of Figure 11b show that as the speed increases,
the sleeper vibration increases with larger slopes between
4 and 10 km/h. The measured RMS values are close to
the simulation result in Figure 11a. Meanwhile, Figure 11b
shows that the speckle noise increases almost linearly
with speed, which is consistent with the simulation result.
These agreements reflect that the establishedmodels effec-
tively characterize the track dynamics and the speckle
noise in V-Track. Further, the last plot of Figure 11b shows
that, as the speed increases, the SNR first increases (2–
6 km/h), becomes flat (6–10 km/h), and then decreases
slightly (10–12 km/h). This result is similar to the simulated
trend above 4 km/h in Figure 11a, while deviation occurs at
2 km/h because theRMS values are relatively small and the
SNR is sensitive to slight deviations between simulations
and measurements.

5.3 Field measurements

In the field measurements, considering the potential error
in synchronizing the LDV signal with the laser spot posi-
tion, the measured signal is cut into overlapped segments
with different offsets from the estimated center of each
sleeper, as shown in Figure 12. Then, for each segment,
the vibration–noise separation method is applied, and the
RMS values of the sleeper vibration and speckle noise
and the corresponding SNR are calculated. Finally, the
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14 ZENG et al.

F IGURE 11 Speed-dependent characteristics. (a) Simulations, (b) laboratory measurements, (c) field measurements.
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ZENG et al. 15

F IGURE 1 2 Weight assignment for segments with different
offsets.

weighted average of the results from different segments for
each sleeper is calculated as the final result. The weights
follow the shape of a Gaussian distribution and decrease
toward zero as the segment offsets from the estimated
center to the adjacent sleepers.
The results for all the 580 sleepers in Figure 9c and

d are plotted in Figure 11c. It shows trends similar to
the simulation and laboratory measurement results in
Figure 11a and b. As the speed increases, the sleeper
vibration increases first slowly (5–10 km/h), then rapidly
(10–20 km/h), then slowly again and even drops slightly
(20–30 km/h). Meanwhile, the speckle noise amplitude
increases almost linearly with respect to the speed. As a
consequence of the competition between the sleeper vibra-
tion and the speckle noise, the SNR first drops slightly
to reach a local minimum at 7 km/h, then increases to
reach a local maximum at 20 km/h, and then drops grad-
ually. Within the speed range investigated, the speed of
15–25 km/h provides a higher SNR than others.
The similarity between the above simulation, laboratory

measurement, and field measurement results demon-
strates that the proposed methodology effectively charac-
terizes the speed-dependent characteristics of train-borne
LDV measurements. Nevertheless, it should be noted that
the change of SNR with respect to speed depends on
the characteristics of sleeper dynamics and speckle noise.
Therefore, the optimal speed with the highest SNR varies
for different tack structures, measurement configurations,
and operational conditions.

6 CONCLUSION

This paper proposes and applies a holistic methodology
to characterize train-borne LDVmeasurements for sleeper
vibrations and investigates their speed-dependent charac-
teristics. Validatednumericalmodels are used to separately
simulate sleeper vibrations and speckle noise at different
speeds and support the parameter tuning of the developed

vibration–noise separation method. The method is then
validated with laboratory measurements and applied to
field measurements. The dependence of sleeper vibration,
speckle noise, and SNR on train speed is determined using
simulations andmeasurements. The main conclusions are
summarized below.

(1) The established train-track-LDV model and speckle
translation model reproduce the sleeper vibrations
and speckle noise in V-Track at the vehicle speed of
2–12 km/h.

(2) The vibration–noise separation method works effec-
tively in the simulations at the speed of 1–20 km/h, the
laboratory measurements at the speed of 2–12 km/h,
and the fieldmeasurements at the speed of 5–30 km/h.

(3) The RMS value of speckle noise increases almost lin-
early with speed, whereas the RMS value of sleeper
vibration increases nonlinearly with speed. Their
competition leads to the nonlinear behavior of SNR
with respect to train speed. The optimal speed range
yielding the highest SNR varies for different tack
structures andmeasurement configurations, for exam-
ple, 6–10 km/h in the laboratory measurements and
15–25 km/h in the field measurements.

This paper demonstrates the potential of train-borne
LDV to be applied to large-scale rail infrastructure moni-
toring. Analyzing its speed-dependent characteristics pro-
vides deeper insights into the quality and usability of
signals measured at different speeds. With the simula-
tions serving as the foundation and assurance for this
research, future research will focus more on real-life mea-
surements. The vibration–noise separation method will
be improved by incorporating signal processing methods
that are potentially more effective for strongly nonstation-
ary signals, such as synchrosqueezed wavelet transform
(Amezquita-Sanchez & Adeli, 2015a; Li et al., 2017; Perez-
Ramirez et al., 2016), Bayesian wavelet transform (Jiang
et al., 2007; Yue et al., 2019), and empirical wavelet trans-
form (Amezquita-Sanchez & Adeli, 2015b; Hu et al., 2017).
Fieldmeasurements, including both train-borne and track-
side measurements, will be performed to further verify the
technology. The performance of train-borne LDVmeasure-
ments at higher speeds will also be investigated, where
higher frequency bands, more uncertainties, and lower
frequency resolution can be expected.
Furthermore, it can be noticed from the real-life mea-

surements that different sleepers vibrate differently, which
is related to the properties of the sleepers and other track
components, such as rail pads and ballast. Therefore,
the measured sleeper vibrations can be used to monitor
the dynamic properties of track structures. To tackle the
challenge induced by the amplitude and frequency
variation of the excitation from the vehicle to the track,
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16 ZENG et al.

wheel-rail force or vehicle vibration signals can be incor-
porated to normalize the train-borne LDV signals and
estimate the transfer functions of track structures (Zeng,
Núñez, et al., 2023). The deviation in the estimated trans-
fer functions can reflect the difference in track stiffness
and damping, which can be further used for anomaly
detection in railway tracks.
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APPENDIX A: TRAIN-TRACK-LDVMODEL
In the train-track model, the Ritz method is employed to
characterize the dynamics of the rail. The modal displace-
ment in the h-th modal coordinate is denoted as qh(t), and
the h-th modal function is defined as follows (Zhai, 2020):

𝑍ℎ (𝑥) =

√
2

𝑚r𝑙
sin

ℎ𝜋𝑥

𝑙
(A.1)

where the length of the rail is l = ns×ds.
The displacement of the rail is then approximated as

the superposition of the first nm modal displacements as
follows.

𝑧r (𝑥, 𝑡) =

𝑛m∑
ℎ=1

𝑍ℎ (𝑥) 𝑞ℎ(𝑡) (A.2)

Based on the separation of x and t in Equation (A.2),
Equation (4) can then be converted into the following
second-order ordinary differential equations:

𝑞𝑘(𝑡) +

𝑛s∑
𝑖=1

𝑐r𝑖𝑍𝑘 (𝑥s𝑖)

𝑛m∑
ℎ=1

𝑍ℎ (𝑥s𝑖) �̇�ℎ(𝑡) +
𝐸𝐼

𝑚r

(
𝑘𝜋

𝑙

)4

𝑞𝑘(𝑡)

+

𝑛s∑
𝑖=1

𝑘r𝑖𝑍𝑘 (𝑥s𝑖)

𝑛m∑
ℎ=1

𝑍ℎ (𝑥s𝑖) 𝑞ℎ(𝑡) −

𝑛s∑
𝑖=1

𝑘r𝑖𝑧s𝑖(𝑡)𝑍𝑘 (𝑥s𝑖)

−

𝑛s∑
𝑖=1

𝑐r𝑖�̇�s𝑖(𝑡)𝑍𝑘 (𝑥s𝑖) = 𝐹c(𝑡)𝑍𝑘 (𝑥c(𝑡)) 𝑘 = 1,… , 𝑛m

(A.3)
The simulation parameters are listed in Table A1.

APPENDIX B: SPECKLE TRANSLATIONMODEL
The electric field of the reference beam on the photodetec-
tor is described as follows (Martarelli, 2001):

𝐸R = 𝐴R exp

[
𝑖

(
2𝜋

𝜆
𝑡 + 𝜔R𝑡 + 𝜃R

)]
(B.1)

whereAR and θR represent the amplitude and phase of the
reference beam, respectively.
Each speckle has its own amplitude and phase, denoted

as ASk and θSk for the k-th speckle. Given the target vibra-
tion z(t), the electric field of the k-th speckle is expressed
as follows (Martarelli, 2001).

𝐸S𝑘 = 𝐴S𝑘 exp

[
𝑖

(
2𝜋

𝜆
𝑡 − 2

2𝜋

𝜆
𝑧(𝑡) + 𝜃S𝑘

)]
(B.2)

Then, each speckle on the photodetector is heterodyned
with the reference beam, and the intensity of such a mixed
area is derived as follows (Denman et al., 1996):

𝐼𝑘(𝑡) = [𝐸R + 𝐸S𝑘] × [𝐸R + 𝐸S𝑘]
H

= 𝐴2
R + 𝐴2

S𝑘
+ 2𝐴R𝐴S𝑘 cos

(
𝜔R𝑡 +

4𝜋

𝜆
𝑧(𝑡) + 𝜃R − 𝜃S𝑘

)
= 𝐼R + 𝐼S𝑘 + 2

√
𝐼R𝐼S𝑘 cos

(
𝜔R𝑡 +

4𝜋

𝜆
𝑧(𝑡) + 𝜃R − 𝜃S𝑘

)
(B.3)
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TABLE A1 Parameters for simulating sleeper vibration.

Symbol Parameter Value
mv Mass of vehicle 50 kg
kv Stiffness of suspension 230 kN/m
cv Damping of suspension 100 N/(m/s)
mw Mass of wheel (including axel box) 40 kg
rw Radius of wheel 0.065 m
mr Mass of rail per unit length 3.51 kg/m
I Second area moment of rail 50803 mm4

nm Truncated order of rail modes 25
E Elastic modulus of rail 205.1 GPa
kr Stiffness of rail pad 200 MN/m
cr Damping of rail pad 1.9 kN/(m/s)
ns Number of sleepers 25
ms Mass of sleeper 1.15 kg
d Sleeper width 0.04 m
ds Sleeper spacing 0.1258 m
ks Stiffness of sleeper pad 10 MN/m
cs Damping of sleeper pad 860 N/(m/s)
Pr Power of Gaussian white noise for rail

irregularity
−120 dBW

λpass Passband wavelength of rail irregularity 10 mm
λstop Stopband wavelength of rail irregularity 0.4 mm
hstop Stopband attenuation 55 dB
Δx Laser-wheel offset 0.063 m
Δt Integration step size 1×10−5 s
γ Integration parameter 0.5
β Integration parameter 0.25

where H denotes conjugate transpose, IR and ISk are
intensities of the reference beam and the k-th speckle,
respectively.
The last term in Equation (B.3) carries the phase change

due to the target motion and the laser speckle. After fil-
tering out the first two terms without periodicity and
summing up the contributions of all the K speckles, the
output of the photodetector is (Denman et al., 1996)

𝑢(𝑡) ∝

𝐾∑
𝑘=1

𝑎𝑘2
√
𝐼R𝐼S𝑘 cos

(
𝜔R𝑡 +

4𝜋

𝜆
𝑧(𝑡) + 𝜃R − 𝜃S𝑘

)

= 2
√
𝐼R𝐼𝑀 cos

(
𝜔R𝑡 +

4𝜋

𝜆
𝑧(𝑡) + 𝜃M

)
(B.4)

where θM is expressed in Equation (8) and IM is expressed
as follows (Rothberg & Halkon, 2004):

𝐼M =

√√√√√ 𝐾∑
𝑝=1

𝐾∑
𝑞=1

𝑎𝑝𝑎𝑞

√
𝐼S𝑝𝐼S𝑞 cos

(
𝜃S𝑝 − 𝜃S𝑞

)
(B.5)

TABLE B1 Parameters for simulating speckle noise.

Symbol Parameter Value
λ Wavelength of laser 1550 nm
w Diameter of laser spot 0.19 mm
A Number of speckles covered by

photodetector length
2

R Distance between target and
photodetector

2.7 m

m Number of grids along the translation
direction

200

n Number of grids along the orthogonal
direction

100

fC Cut-off frequency of low-pass filter 100 kHz

The target vibration z(t) can be measured from the
frequency of u(t), as expressed in Equation (7). The
speckle noise is caused by the phase change rate
dθM/dt, which depends on the properties of the laser
speckles. Assuming that the laser is well-focused on
the target surface, the space correlation length of the
speckles on the photodetector is calculated as follows
(Asakura & Takai, 1981):

𝑙C =
𝜆𝑅

𝜋𝑤
(B.6)

where w is the diameter of the laser spot and R is the
distance between the target surface and the photodetec-
tor. The length lC describes the size of each speckle,
within which the intensity and phase, ISk and θSk,
are constant. The intensity and phase of all speckles
are assumed to follow the following negative exponen-
tial distribution and uniform distribution, respectively
(Denman et al., 1996):

P (𝐼S) =
1⟨𝐼S⟩ exp

(
−

𝐼S⟨𝐼S⟩
)
𝐼S > 0 (B.7)

P (𝜃S) =
1

2𝜋
−𝜋 ≤ 𝜃S ≤ 𝜋 (B.8)

where < IS > denotes the mean speckle intensity. Random
samples of ISk and θSk are generated for each speckle.
Meanwhile, the time correlation length of the speckles

on the photodetector is as follows (Asakura & Takai, 1981):

𝜏C =
1|𝑣|
(

1

𝑤2
+

1

𝑙2C

)−1∕2

(B.9)

The simulation parameters are listed in Table B1.
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