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A B S T R A C T

The conventional vertical track quality index (TQI) based on the standard deviation of longitu-
dinal levels yields standardized railway track condition assessment. Nevertheless, its capability to 
identify problems is limited, particularly in the ballast and substructure layers when abrupt 
changes affect train-track interaction. Previous research shows that dynamic responses from 
moving trains via axle box acceleration (ABA) measurements can quantify abrupt changes in the 
vertical dynamic responses. Thus, this paper proposes a framework to design an enhanced vertical 
TQI, called EnVTQI, by integrating track longitudinal levels and dynamic responses from ABA 
measurements. First, measured ABA signals are processed to mitigate the influence of variation in 
measurement speed. Then, substructure and ballast-related features are extracted, including scale 
average wavelet power (SAWP) in the ranges 0.04 m-1 to 0.33 m-1 (substructure) and 1.25 m-1 to 
2.50 m-1 (ballast). This enables identifying track conditions at different track layers. Finally, 
EnVTQI is determined by weight averaging between the conventional vertical TQI and the ABA 
features from moving trains. The performance of EnVTQI is evaluated based on 48 segments of a 
200-m track on a Dutch railway line. The results indicate that EnVTQI helps to distinguish track 
segments that cause poor train-track interaction, which the conventional TQI does not indicate. 
EnVTQI can supplement the conventional TQI, improving the effectiveness of track maintenance 
decision-making.

1. Introduction

The ballasted tracks are utilized globally due to their numerous advantages, such as low construction costs, less complexity in 
design and construction processes, and simplicity of maintenance [1]. The ballast layer and several underneath engineering materials 
layers, known as the substructure, play an essential role in supporting the track superstructure, i.e., sleepers and rails. The main 
functions of the substructure are transferring traffic loads, facilitating drainage, and maintaining track alignments [2]. The degra-
dation of ballast and substructure layers leads to poor track quality, resulting in broken ballast, excessive mud, and track settlement. In 
addition, vegetation and excessive undrained water on the track surface suggest a high moisture content in the substructure layer, 
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resulting in a lower bearing capacity of materials [3], as shown in Fig. 1(a–d). These degraded track segments can cause abrupt changes 
in train-track interaction, which increases risks and safety concerns and reduces the service quality of train operations.

Track geometry measurements using track recording vehicles [4] are the standard practice in the railway industry for track in-
spection at the network level. To assess the overall quality of railway tracks, different track quality indices (TQI) have been developed 
based on statistical analyses of track geometry parameters and combined by using mathematical methods. TQIs are then used by 
railway authorities or infrastructure managers to standardize track quality and define maintenance requirements. Examples of con-
ventional TQIs are the combined standard deviation (CoSD) of the European standard [5], the Q index of the Swedish national railway 
[6], the Chinese TQI [7], the US track roughness index [8], and the FRA track geometry index [9]. In Ref. [10], the accuracy, 
sensitivity, data required, and specificity of TQIs, including CoSD as the baseline, are evaluated based on synthetic track geometry 
data. As expected, the findings show that different TQIs perform differently in indicating track segments that need maintenance. When 
selecting a TQI, their tradeoffs are to be considered. For example, the US track roughness index and FRA Track Geometry Index (TGI) 
show high sensitivity to changes in geometry parameters, which might be easily biased by noise or error in measurement. In Ref. [11], 
the characteristics of 14 TQIs have been studied based on measurement data. The results show that the standard deviation-based TQIs 
perform well in assessing overall track condition but might be biased due to track gauge widening in the curved track segments.

Some studies have focused on data-driven and machine-learning methods to extract information from track geometry parameters as 
an alternative approach. Using data analytics, those applications can provide track geometry forecasts [12] and track geometry 
degradation predictions [13]. In Ref. [14], principal components analysis (PCA) is used for dimension reduction of track geometry 
parameters. The results show that more than 90 % of the variance can be explained by the first three principal components (PCs). In 
addition, the PCs can be considered directly as TQIs since they perform better in defective segment identification than conventional 
TQIs. In Ref. [15], the dimension reduction of track geometry parameters using T-stochastic neighbor embedding (T-SNE), a nonlinear 
method, is compared with PCA, a linear method. While the two methods can represent track quality, T-SNE tends to overfit the training 
and test datasets, resulting in false defect prediction. In Ref. [16], a stochastic TQI is developed to deal with uncertainty in mea-
surements of track geometry parameters, in which the Bayesian analysis is its core. In Ref. [17], the relationship between track ge-
ometry parameters and the lateral to vertical wheel load ratio has been studied using neural network models. The relationships 
obtained are then used as part of the track geometry inspection technology. Nevertheless, further understanding of the physical 
meaning of the results from data-driven and machine learning approaches is required by including the physical interpretability of the 
results.

Track quality assessment based on track geometry parameters has some limitations. For instance, track geometry measurements 
cannot always capture abrupt changes in train-track interaction [17,18]. Moreover, measurement frequency at a particular location 
might be limited due to the availability of track recording vehicles. Thus, measurement techniques implemented using in-service trains 
are becoming the focus of the railway industry. This approach can minimize the abovementioned concerns due to the advantages of the 
instrumented in-service trains operating daily. Thus, vehicle responses can be obtained frequently as inputs for track quality assess-
ment. However, the challenge is extracting useful information from measured data and standardizing such a type of measurement. 
According to the literature, several studies have been conducted to find solutions to use vehicle responses for assessing track condition. 
In Ref. [19], linear regression models are developed to estimate the longitudinal level from bogie vertical acceleration signals. Then, 

Fig. 1. Degraded track segments: (a) ballast breakage, (b) mud pumping and excessive undrained water, (c) excessive track settlement as indicated 
by the arrow, and (d) vegetation in the track.
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the root-mean-square values of the estimated longitudinal level can be used as a track condition indicator. In Ref. [20], a method to 
estimate track vertical and lateral irregularities using bogies and axle box acceleration signals is developed. Several layers of filtering 
methods, including Kalman filter, bandpass filters, and amplitude and phase compensation filters, are applied to analyze acceleration 
signals to obtain estimated track irregularities. In Ref. [21], a Kalman filter-based model is developed to estimate lateral track ir-
regularity using input from a gyroscope and accelerometers at a wheelset and a bogie frame. Besides estimating track irregularities, 
some studies develop a track condition indicator derived from measured vehicle responses. In Ref. [22], the continuous wavelet 
transform is conducted on the simulated vertical vehicle body acceleration from the 2-DOF model while the train passes various track 
conditions. Then, the summation of wavelet coefficients of the acceleration signal can be considered an indicator to identify damage 
locations. In Ref. [23], vertical vehicle body acceleration is the input. Then, the developed algorithm is applied to simplify the input 
into a bump pattern, whose characteristics, such as magnitude, can be considered an indicator. In Ref. [24], a support vector machine 
classifier with a linear kernel is used to determine the most robust features from car body acceleration in detecting track changes. 
Those outcomes from vehicle responses can be used separately or supplementary to conventional TQIs for more effective track 
maintenance planning rather than relying solely on track geometry information from dedicated track recording vehicles.

Track condition assessment based solely on track geometry parameters provides some constraints, while previous research works 
have demonstrated the potential of utilizing vehicle responses for track condition assessment. Hence, those aspects motivated us to 
enhance the performance in track condition assessment by integrating track geometry parameters and vehicle responses. This paper 
proposes a framework to design an enhanced vertical track quality index, called EnVTQI, by combining track geometry and vehicle 
responses in the vertical direction. Track quality regarding the vertical direction is considered since deviation in the longitudinal level, 
which is relevant to track vertical irregularities, has been reported to be highly relevant to overall track quality [25]. We focus on the 
axle box acceleration (ABA) measurement regarding vehicle responses. Measuring ABA is cost-efficient and not complex when 
implemented on most types of railway vehicles, including passenger trains that operate daily. Several studies have been conducted on 
ABA measurements for rail defects and irregularities detection [26–31], but a limited number of studies are related to track quality 
assessment. In Ref. [32], a method to measure track vertical stiffness, a parameter representing a relationship between applied load 
and overall track deformation, through ABA signals is developed. In Ref. [33], a combined approach between physic and data-driven 
models is developed to evaluate stiffness at different layers, i.e., railpad and ballast, at the same time.

In this paper, the main contributions are the following.

1) A framework for designing an enhanced vertical track quality index (EnVTQI) by fusing longitudinal level with features from the 
vertical ABA signals.

2) A method for reducing the influence of measurement speed variation to allow the use of vertical ABA signals that are measured 
under the operational condition of commercial trains.

3) Validation of the framework on the estimation of ballast and substructure layer conditions.

The remaining sections of this paper are organized as follows. Section 2 describes measurements at railway tracks, which are 
sources of input for designing EnVTQI. Section 3 explains a proposed framework for designing EnVTQI of a particular track segment. 
Section 4 presents results and discussions on the performance evaluation of EnVTQI. Finally, conclusions and suggestions for further 
work are presented in Section 5.

Fig. 2. Case study track segments: (a) location of 48 segments, (b) zoom-in detail of track segments I-5 and II-5 (source of satellite photos: Goo-
gle Maps).
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2. Inputs required for EnVTQI

2.1. Track information

In this study, we analyze track segments located on a Dutch railway line, which consists of 2 tracks that are dedicated to a fixed 
travel direction. Track-I is for operational traffic heading to the North, and Track-II is for the opposite direction. The study considers 
mostly straight segments. Then, segments are defined with criteria that each segment is 200 m long, following EN 13848-6 [5], and 
consists of no civil structures, such as bridges or level crossings, which lead to varying ballast and substructure condition. In addition, 
some track segments are also excluded due to the composition of track components, such as insulated rail joints, switches, and 
crossings, resulting in isolated discontinuities of train-track interaction. In addition, the Dutch railway infrastructure has specific 
criteria for condition assessment of those mentioned civil structures and track components [34]. These criteria align with the finding 
from Ref. [25] that track segments with different characteristics, such as curvature, embankment thickness, and inclusion with civil 
structures or joints, show local deterioration rates. Thus, we excluded civil structures and track components from the further analysis, 
allowing a comparison between track segments with similar structural characteristics. According to the mentioned criteria, 48 of the 
200-m-long conventional track segments from both tracks, namely I-1 to I-24 for Track-I and II-1 to II-24 for Track-II, will be evaluated 
for the case study, as shown in Fig. 2(a and b).

2.2. Track longitudinal level measurement

ProRail, the infrastructure manager for the Dutch railway network, signs performance-based contracts for track maintenance ac-
tivities with the outsource contractors. As a part of the contracts, contractors must conduct track geometry measurements with track 
recording vehicles, as shown in Fig. 3, at least once a year. Then, the information from measurements is centralized at the ProRail 
railway infrastructure monitoring database, called the Branche Breed Monitoring Systeem (BBMS, in Dutch). All datasets in the BBMS 
system, including track geometry datasets, are reported as corresponding to the reference track kilometer position.

Among measured track geometry parameters, this study considers using only longitudinal levels directly obtained from BBMS. Two 
obtained longitudinal levels correspond to rail r ∈ {L, R}, in which L is the left rail, and R is the right rail. Those signals are already 
processed with a bandpass filter within a wavelength range between 3 m and 25 m, and the signals have been reported in the space 
domain with a resolution of 0.25 m, according to EN 13848-1 [35]. Hence, the longitudinal level LL of rail r at the track location x can 
be defined as LLr(x). For a 200 m track segment, LLr consists of 801 data points per rail. In this paper, one dataset of longitudinal levels 
measured in 2019 is obtained from BBMS for further analysis on designing EnVTQI.

2.3. Axle box acceleration (ABA) measurement

2.3.1. ABA measurement system
The ABA measurement system, as shown in Fig. 4(a and b), developed by the Section of Railway Engineering, TU Delft [36], 

consists of three major components. The first component is a set of acceleration sensors, a one-directional accelerometer is attached to 
a particular axle box of the wagon. This study considers only signals from accelerometers in the vertical direction. The second 
component is speed and positioning sensors, a tachometer and a global positioning system (GPS) unit with real-time kinematic 
positioning function to determine the measurement speed and corresponding track position of the wagon. The third component is a 
data acquisition system (DAQ) unit with in-house developed control software for recording and synchronizing multiple signals from all 
available sensors. Since the ABA measurement system is designed for a wide range of applications in railway infrastructure condition 
monitoring (including shortwave defect irregularities detection), a sampling rate of 25.6 kHz is used in the current configuration. ABA 
systems are currently being implemented in various types of railway vehicles in different countries, including daily passenger trains. In 
this study, the data collected comes from an instrumented wagon from TU Delft dedicated to railway research purposes. In this setup, 
loading can be considered almost constant in the different measurements, while an important source of variability will come from 
speed variations, which are analyzed in this paper.

Based on the configuration of the measurement system, eight acceleration signals are considered from four wheelsets w ∈ {w1, w2, 

Fig. 3. Track recording vehicle, in which the geometry measurement module is shown in the box (source of photos: ProRail).

S. Unsiwilai et al.                                                                                                                                                                                                      Heliyon 10 (2024) e38670 

4 



w3, w4}, each wheelset with two wheels that correspond to rails r ∈ {L, R}, the left (L) and right (R) rails. The acceleration a at time 
instant t for wheelset w and rail r is defined in the time domain as aw,r(t). The location of the wheelset w at time instant t is xw(t). Hence, 
after synchronization with the registered reference information in the BBMS system, such as GPS coordinates of reference kilometers, 
the acceleration signal can be evaluated as a function of the track location x or in the space domain as aw,r(x), where location x 
corresponds to the BBMS reference track kilometer positioning.

The number of aw,r data points per a 200 m track segment depends on the measurement speed. For instance, it could be up to 2.56 ×
105 data points from one axle box when an average measurement speed is 20 m/s. In May 2019, two rounds of ABA measurement 
campaigns were conducted on the case study track segments. These two datasets are used for further analysis in the following sections.

2.3.2. Scale average wavelet power of ABA signals
ABA signals have varied responses due to changes in speed, axle load, and track condition at particular locations. In this paper, we 

used ABA signals from the dedicated instrumented wagon. Thus, it can be considered that the axle load of the instrumented wagon does 
not change significantly in different measurements. Therefore, the variations in ABA signals are mainly caused by speed and track 
conditions. Instead of directly utilizing ABA signals in the space domain, this study analyzes ABA signals in the space-spatial frequency 
domain, with the ABA signals being synchronized in the time domain with their corresponding position. The signals in the space-spatial 
frequency domain are converted from signals in the time-frequency domain. The spatial frequency corresponds to the inverse of the 
wavelength, calculated by dividing the measured frequency by the measured speed, obtained as in Ref. [31].

Since ABA signals are non-stationary signals, wavelet analysis is one of the well-known analysis methods. In this paper, ABA signals 
in the space domain are transformed into the space-spatial domain using the continuous wavelet transform (CWT) [37]. The wavelet 
power spectrum (WPS) of ABA signals, a matrix of energy at a specific location (with respect to time synchronization) and frequency 
(relative to scale), is a product of CWT. Finally, the scale average wavelet power (SAWP) of ABA signals is calculated to investigate the 
variation of WPS within a considered frequency range along the segment. SAWP can be defined as follows: 

SAWPw,r(x)=
δjδt

Cδ

∑j2

j=j1

⃒
⃒
⃒
⃒
∑N− 1

nʹ=0
aw,r(nʹ)ψ*

(
(nʹ− n)δt

sj

)⃒
⃒
⃒
⃒

2

sj
Eq. 1 

where SAWPw,r(x) is the SAWP of ABA signal at wheel w and rail r, at location x and within the wavelet scale s from sj1 to sj2, δj is the 
scale step, δt is the time interval between data points, Cδ is the empirically derived constant of the wavelet function, N is the number of 
data points in a considered space frame, n′ = 0, …, N-1, aw,r(n′) is the ABA signal at an instant location x = n′, n is the variable for the 
continuous translation, and Ψ is the wavelet mother function, in which the Morlet is selected in the study. The function Ψ * is a family 
of wavelets derived from the mother wavelet by translations and scaling, and * refers to the complex conjugate.

According to the literature and findings from our previous studies, the vertical condition of the substructure layer is related to 
vertical track irregularities in the wavelength range of 3–25 m [31,38,39]. In addition, findings from the measurement campaign in 
Ref. [40] show that the variation of ballast layer properties exhibits a relationship with SAWP of ABA signals in the wavelength range 
of sleeper interval. Hence, in this study, we considered SAWP from two spatial frequencies (inverse of the wavelength). Firstly, SAWPS 
corresponds to the spatial frequency range of 0.04 m-1 to 0.33 m-1 or to irregularities in the wavelength from 3 m to 25 m, which is 
related to the condition of the substructure layer. Secondly, SAWPB corresponds to the spatial frequency range of 1.25 m-1 to 2.50 m-1 

or corresponding to irregularities in the wavelength from 0.4 m to 0.8 m, which covers the 0.6 m of a nominal distance between 
sleepers in the Dutch railway lines, including ±0.2 m of uncertainty bandwidth. In this range, SAWP is related to the condition of the 
ballast layer.

3. The EnVTQI design

This section presents a framework for designing an EnVTQI of a considered track segment, a 200 m distance each for this study. The 
framework consists of three main steps: 1) ABA signal processing, 2) Feature extraction from SAWP of ABA signals and longitudinal 

Fig. 4. The ABA measurement system instrumented on the dedicated wagon: (a) a GPS antenna (source of photo: TU Delft OpenCourseWare), (b) 
accelerometers attached to an axle box.
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levels, and 3) Feature fusion method for determining EnVTQI, as shown in Fig. 5. A detailed description of each step can be found in the 
following subsections.

3.1. ABA signals processing

SAWP from two spatial frequency ranges, 3 m–25 m, corresponding to the substructure layer, and 0.4 m–0.8 m, corresponding to 
the ballast layer, are used for designing EnVTQI. However, calculating SAWP directly from measured ABA signals might consume 
unnecessary calculation efforts since the signals still contain irrelevant information, such as high-frequency contents corresponding to 
shortwave irregularities. Further, ABA signals are speed-dependent, so a method is needed to handle the consequences of the speed 
effect. Hence, processing steps on measured ABA signals should be conducted and are discussed in this section.

3.1.1. Reduce sample size and eliminate high-frequency contents
According to the configuration of our ABA measurement system, ABA signals were recorded at the fixed sampling rate of 25.6 kHz 

to guarantee that the small defects on the rail surface were captured. According to the literature, responses of ballast and substructure 
layers are much lower in frequency [41–43]. Thus, a lower sampling rate can be considered for practical applications of ABA systems 
that analyze ballast and substructure layer-related problems. The fixed sampling rate makes the spatial resolution of ABA signals 
dependent on measurement speed. A higher speed of the instrumented wagon provides a lower spatial resolution. For example, for a 
typical train operational speed on the Dutch railway lines of 140 km/h (38.9 m/s), the lowest spatial resolution of ABA signals is 1.52 
× 10− 3 m. This resolution is much higher than the longitudinal levels, whose spatial resolution is 0.25 m. The relationship between 
passing frequency (f), wavelength (λ), and passing speed (v) is: 

f =
v
λ

Eq. 2 

The shortest considered wavelength for this study is 0.4 m. Regarding a typical train operational speed at 140 km/h (38.9 m/s), the 
highest corresponding frequency to be considered is 97.2 Hz. In this study, most measurements are below 100 km/h. The desired 
sampling rate and cutoff frequency must correspond to the operational speed. Thus, we consider a resampling from 25.6 kHz to 256 Hz 
by applying the standard MATLAB resample function [44] to reduce the sample size and a low pass filtering at 100 Hz. The processed 
signals are then used for the next steps.

3.1.2. Reduce influence from variation in measurement speed
ABA responses are dependent on running speeds and changes in axle load. In this paper, ABA signals are from our dedicated 

instrumented wagon, where the axle load can be considered nearly constant during different measurements. Therefore, we consider 
the effect of measurement speed to be an important source of variability. SAWP from different measurement speeds shows a similar 
pattern at a particular location [31]. However, the magnitude of SAWP is higher when the measurement speed is higher. Therefore, 
this step considers reducing the influence of variation in measurement speeds on the SAWP, making an EnVTQI evaluation inde-
pendent of the measurement speed. We propose an approach to reduce the influence of speed as follows: 

aʹ
w,r(x)=

aw,r(x)
v2 Eq. 3 

where a′w,r(x) is the processed ABA signal from wheel w and rail r at location x, after reducing speed influence, aw,r(x) is the processed 
ABA from the previous step, and v2 is the square of the average measurement speed when the instrumented wagon passes by the 
considered track segment.

Fig. 5. A framework for designing EnVTQI of a particular track segment.
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The ABA signals at the right rail of segment II-24 are considered as an example to evaluate the performance of the proposed 
approach. Two measurements with average speeds of 21.6 m/s and 12.5 m/s were conducted on this segment on the same day of May 
2019. Therefore, the condition of the track can be considered identical between the two measurements. SAWP from ABA signals before 
and after reducing the influence of speeds are shown in Fig. 6(a–d). It can be noticed that the similarity, especially magnitude, of 
SAWPS and SAWPB between the two measurements increases after reducing the influence of speed.

The Euclidean distance is proposed as an indicator to assess the similarity between 2 signals, as follows. 

d(p, q)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(qi − pi)

2

√

Eq. 4 

where d(p,q) is the Euclidean distance between signals p and q, pi and qi are the values of signal p and q at index i, and n is the signals p 
and q length. In this case, we consider SAWP for 200 m at the spatial resolution of 0.25 m, resulting in a similar signal length at 801 
samples despite the difference in measurement speeds.

The lower distance between 2 signals suggests a higher similarity of those signals, while the zero distance indicates ideally similar 
signals. Please note that the magnitude of SAWP signals before and after reducing the influence of speed are different. Thus, scaling on 
SAWP should be conducted before calculating the Euclidean distance to ensure a fair comparison. Fig. 7(a–d) show the example of 
SAWPS,w3,R before and after reducing the influence of speed and their corresponding scaled SAWP. The value in the top-left of the 
scaled SAWP plots (Fig. 7(c and d)) corresponds to the scaled Euclidean distance. It can be indicated that the proposed method can 
reduce the influence of speed since the distance is reduced from 7.051 to 1.487, increasing the similarity between signals from two 
rounds of measurement. The scaled Euclidean distance between the signals of the remaining wheels can be found in Fig. 6(a–d).

Regarding visual observation and the scaled Euclidean distance, it can be concluded that even though the influence of speed 
variation still occurs, it is significantly reduced by this proposed approach.

3.2. Feature extraction from input signals

In this step, we consider longitudinal levels and SAWPs of ABA signals as input signals. Then, the most relevant features are 
extracted from input signals to determine EnVTQI. The steps are discussed next.

3.2.1. Feature from longitudinal levels
According to EN 13848-6 [5], the standard practice for quantifying the vertical track quality is based on the standard deviation of 

longitudinal levels. First, the quality of the measured longitudinal level datasets should be considered. Environmental factors, different 
measurement conditions, malfunctioning sensors, and other uncontrolled uncertainties might affect the measurement results, such as 
noise interference and position shifting [45]. Then, preprocessing, such as position alignment or removal of invalid measured values, is 
required to increase the accuracy of the standard deviation. Then, the standard deviation of the longitudinal level at the left rail, SDLL,L, 

Fig. 6. SAWPS and SAWPB of ABA signals at the right rail of the segment II-24: (a) and (c) before reducing the influence of speed, (b) and (d) after 
reducing the influence of speed. The top-left number is the scaled Euclidean distance between 2 corresponding signals.
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and the right rail, SDLL,R, can be separately calculated as follows: 

SDk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(k(xi) − k)2

N − 1

√
√
√
√
√

Eq. 5 

where SDk is the standard deviation of signal k, k(xi) is the value of signal k at position xi, k is the average value of signal k, and N is the 
data size of signal k. Then, SDLL,L and SDLL,R are averaged into a single value, avg(SDLL), and it is considered as a representative feature 
from the longitudinal levels of a particular track segment.

3.2.2. SAWP calculation
After reducing the influence of speed variation, the processed ABA signals, a′w,r(x), are inputs for SAWP calculation, according to 

Eq. (1). Then, SAWPS,w,r, which corresponds to the condition of the substructure layer, and SAWPB,w,r, which corresponds to the 
condition of the ballast layer, are obtained from eight ABA signals measured at eight corresponding axle boxes at wheelset w and rail r. 
Finally, the SAWP related to x′ (same position as reported by the longitudinal level) is obtained with a 0.25 m spatial resolution as 
follows: 

SAWPw,r(xʹ)=

∑

n∈N
SAWPw,r(x(n))

|N|
,N={n, |x(n) − xʹ| ≤0.125 m} Eq. 6 

where SAWPw,r(x′) is the SAWP of the ABA signal from wheel w and rail r at location x′, in which x′ is the same position as reported by 
longitudinal level signals at an interval of 0.25 m. The number of data points |N| depends on the measurement speed. By selecting a 
similar spatial resolution between SAWP and the longitudinal level, we aim to produce a fusion of features that allows us to determine 
EnVTQI. In addition, a spatial resolution at 0.25 m is approximately half of the sleeper interval that is appropriate for detecting changes 
or defects in the level of an individual sleeper.

3.2.3. Features from SAWP of ABA signals
SAWPS and SAWPB are derived products of ABA signals related to substructure and ballast layers, respectively. For designing an 

enhanced track quality index for a particular track segment in which ABA signals are incorporated, the relevant features to track 
quality are extracted from SAWP. In this study, two types of handcraft features are considered as follows.

First, a variation of SAWP is considered. Good-quality track segments should provide less variation in track parameters. For 
example, according to EN 13848-6 [5], track segments that provide lower avg(SDLL) are considered in better quality classes than 
segments with higher avg(SDLL). Following the mentioned criteria, the standard deviation of SAWP is considered to be one of the 
handcraft features, which can be calculated using Eq. (6). Then, SDS,w,r, the standard deviation of SAWPS,w,r, and SDB,w,r, the standard 
deviation of SAWPB,w,r corresponding to eight axle boxes at wheelset w rail r, are obtained.

Second, ABA energy is considered to be another handcraft feature. It has been reported that higher ABA energy can be found where 
severe conditions track components corresponding to various wavelength irregularities are located [31,46,47]. This criterion can be 
considered the principal characteristic of ABA signals. Thus, ABA energy corresponding to a particular track segment is considered and 
can be quantified by an area under the SAWP curve (AUC) as follows: 

Fig. 7. SAWPS of ABA signal from wheel 3, the right, at the segment II-24: (a) and (c) are before reducing the influence of speed, (b) and (d) after 
reducing the influence of speed, (c) and (d) scaled SAWP where the top-left number is corresponding to the scaled Euclidean distance.

S. Unsiwilai et al.                                                                                                                                                                                                      Heliyon 10 (2024) e38670 

8 



AUCk =
∑N

i=1

(k(xi) + k(xi+1))Δx
2

Eq. 7 

where AUCk is the area under the curve of signal k, k(xi) and k(xi+1) are the value of signal k at position xi and the right after position 
xi+1, Δx is the distance between position xi and xi+1.

After Eq. (7), AUCS,w,r, the area under the SAWPS,w,r curve, and AUCB,w,r, the area under the SAWPB,w,r corresponding to eight axle 
boxes at wheelset w rail r, are obtained. In total, the ABA signal from a particular axle box at wheelset w and rail r provides four 
handcraft features: SDS,w,r, AUCS,w,r, SDB,w,r, and AUCB,w,r. Fig. 8 illustrates the correlations between avg(SDLL) of the 48 case study 
track segments and handcraft features corresponding to ABA signals from the eight axle boxes during measurement round 1 in 2019. 
All handcraft features show a positive Pearson correlation to avg(SDLL), with a high correlation of 0.792 and 0.739 for AUCS,w,r and SDS, 

w,r. From this analysis, we observe measurements that are outliers and features that are not highly correlated. These locations are 
interesting in this work, as they are characterized by ABA responses that deviate from avg(SDLL), suggesting local phenomena not 
captured by track geometry.

3.3. Feature fusion

EnVTQI is determined by fusing features from longitudinal levels and ABA signals. EnVTQI is designed to be a single value rep-
resenting the quality of the track for ease of implementation. According to EN 13848-6, avg(SDLL) is calculated from longitudinal levels 
corresponding to two rails to represent a vertical TQI of a particular track segment. This principle is adopted in determining EnVTQI, as 
described next.

Each handcraft feature has eight values derived from signals of the four axle boxes on each rail. The eight values are aggregated 
from all the eight available wheelsets by averaging them. This approach reduces uncertainties in SAWP of ABA signals since we found 
in our previous study that ABA signals from different axle boxes show slight differences, such as slight shifting of SAWP peak locations 
and slight differences in SAWP magnitudes, even though they correspond to the same rail [31]. Fig. 6 shows that different wheelsets 
exhibit slight variations in SAWP, for example, segment II-24. Table 1 shows the extracted features from different wheels and the 
EnVTQI while considering ABA signals from different wheelsets (see Fig. 9). The results indicate that utilizing ABA signals from 
multiple wheelsets can reduce variations in EnVTQI related to different wheel conditions and measurement uncertainty.

Then, five features are considered to determine the EnVTQI of a particular track segment. One feature is from the longitudinal level, 
avg(SDLL), and four features are from SAWP of ABA signals, avg(SDS), avg(AUCS), avg(SDB), and avg(AUCB).

EnVTQI of a particular track segment is a single value obtained from the fusion of the five features. However, directly fusing all 
features might cause bias since the units and ranges of features are different, as shown in the x-axis of Fig. 8. Therefore, the rescaling of 
each feature is applied. For a particular track segment, its corresponding features are rescaled with respect to the determined lower and 
upper values, as follows: 

Fj
=

(
avg

(
Fj
)
− LVF

UVF − LVF

)

Eq. 8 

where Fj is a rescaled value of feature F at segment j, avg(F j) is an averaged value of feature F at segment j, LVF and UVF are the 
determined lower and upper values of feature F. Those boundary values can be adjusted to the measured track. For this study, the lower 
and upper values were determined, as shown in Table 2, based on observation from Fig. 8.

Then, the five rescaled features of segment j, SDj
LL, SDj

S, AUCj
S, SDj

B, and AUCj
B are fused into EnvTQI j, as follows: 

EnVTQIj =α1SDj
LL + α2SDj

S + α3AUCj
S + α4SDj

B + α5AUCj
B,α1 + α2 + α3 + α4 + α5 = 1 Eq. 9 

where EnVTQI j is the enhanced vertical track quality index of track segment j, and αi is the weight factor in the range between 0.00 and 
1.00 of parameter i, in which the sum of αi for five features is 1. EnVTQI is unitless, where the segments with a lower EnVTQI value 

Fig. 8. Correlation plots between the average standard deviation of longitudinal levels and features from SAWPS and SAWPB. The top-right number 
is the Pearson correlation between the paired features of each subplot.
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show a better track quality than those with a higher EnVTQI value. The procedure of tuning weight factors can be conducted following 
the reasoning behind the EN standard [5]. It also allows infrastructure managers to tune the importance of each handcraft feature. For 
instance, the weight of ballast-related features can be higher than substructure-related features in case the condition of the ballast layer 
requires more attention than the substructure. The weight of the substructure-related features can be set to 0.00 for some applications, 
such as planning for tamping.

4. Results and discussion

4.1. Vertical track quality analysis

4.1.1. EN standard indices
EN 13848-6 [5] defines two approaches to quantify track quality. The first approach considers the overall track quality index, 

Table 1 
Extracted features of segment II-24 from ABA signals from different wheels.

Left Rail Right Rail

w1 w2 w3 w4 avg w1 w2 w3 w4 avg

SDS,w,r 4.46 ×
10− 7

3.92 ×
10− 7

3.70 ×
10− 7

3.99 ×
10− 7

4.02 ×
10− 7

5.74 ×
10− 7

7.54 ×
10− 7

7.29 ×
10− 7

7.46 ×
10− 7

7.01 ×
10− 7

% diff from 
avg

11.02 % − 2.35 % − 7.99 % − 0.68 %  − 18.03 % 7.54 % 4.04 % 6.45 % 

AUCS,w,r 9.10 ×
10− 5

8.69 ×
10− 5

8.32 ×
10− 5

9.24 ×
10− 5

8.84 ×
10− 5

7.77 ×
10− 5

9.50 ×
10− 5

9.51 ×
10− 5

9.84 ×
10− 5

9.15 ×
10− 5

% diff from 
avg

2.97 % − 1.71 % − 5.79 % 4.53 %  − 15.12 % 3.75 % 3.93 % 7.45 % 

SDB,w,r 9.06 ×
10− 7

7.56 ×
10− 7

8.66 ×
10− 7

9.20 ×
10− 7

8.62 ×
10− 7

1.02 ×
10− 6

1.14 ×
10− 6

1.36 ×
10− 6

1.30 ×
10− 6

1.21 ×
10− 6

% diff from 
avg

5.13 % − 12.34 % 0.50 % 6.71 %  − 15.36 % − 5.48 % 13.01 % 7.83 % 

AUCB,w,r 4.28 ×
10− 4

4.14 ×
10− 4

3.77 ×
10− 4

4.39 ×
10− 4

4.14 ×
10− 4

4.00 ×
10− 4

4.57 ×
10− 4

5.42 ×
10− 4

5.06 ×
10− 4

4.76 ×
10− 4

% diff from 
avg

3.37 % − 0.18 % − 9.03 % 5.84 %  − 16.02 % − 4.01 % 13.84 % 6.19 % 

Fig. 9. EnVTQI of segment II-24 regarding utilizing ABA signals from multiple wheelsets.

Table 2 
Lower and upper values per feature.

Features F Description Lower and upper values Unit

With speed influence reduction Without speed influence reduction

Lower LVF Upper UVF Lower LVF Upper UVF

avg(SDLL) the average of the standard deviation of LLr 3.0 × 10− 1 3.0 × 100 3.0 × 10− 1 3.0 × 100 mm
avg(SDS) the average of the standard deviation of SAWPS,w,r 4.0 × 10− 8 6.0 × 10− 6 3.0 × 10− 3 1.0 × 100 m2/s4

avg(AUCS) the average of the area under the curve of SAWPS,w,r 1.0 × 10− 5 7.5 × 10− 4 1.0 × 100 1.2 × 102 m3/s4

avg(SDB) the average of the standard deviation of SAWPB,w,r 2.0 × 10− 7 5.5 × 10− 5 1.0 × 10− 2 1.5 × 101 m2/s4

avg(AUCB) the average of the area under the curve of SAWPB,w,r 2.0 × 10− 4 2.0 × 10− 3 5.0 × 101 5.8 × 102 m3/s4
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Fig. 10. Track quality indices and its histogram of case study track segments based on measurement data in 2019: (a) CoSD where equal weight 
factors are assigned, (b) avg(SDLL), (c) EnVTQI where equal weight factors are assigned, (d) EnVTQI where 70 % of weight factors are assigned to 
substructure-related features, and (e) EnVTQI where 70 % of weight factors are assigned to ballast-related features. Red bars indicate track segments 
with the worst 10 % of all considered segments.
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defined as the Combined standard deviation (CoSD), which can be calculated as follows. 

CoSD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

αALavg(SDAL)
2
+ αGSDG

2 + αCLSDCL
2 + αLLavg(SDLL)

2
√

Eq. 10 

where CoSD is the combined standard deviation, SDi is the standard deviation of the geometry parameter i, αi is the weight factor of the 
geometry parameter i, AL is alignment, G is track gauge, CL is cross level, and LL is longitudinal level. The second approach considers a 
particular track geometry parameter. For vertical track quality, the average standard deviation of the longitudinal levels of the left and 
right rails, avg(SDLL), is considered.

Track geometry data from a measurement in 2019 is selected to discuss the track quality of the case study track segments. Forty- 
eight track segments, namely I-1 to I-24 for Track-1 and II-1 to II-24 for Track-II, are selected as case studies. CoSD is calculated with an 
equal weighting factor of 0.25 for each track geometry parameter, as in Ref. [11], which is shown in Fig. 10(a), while avg(SDLL) is 
shown in Fig. 10(b).

Next, a comparison between CoSD and avg(SDLL) is conducted. The CoSD values of all the 48 track segments range from 0.447 to 
1.814. The five segments with higher CoSD values (ranked highest to lowest) are segments II-23, II-22, II-21, II-11, and I-10. These 
segments are highlighted as red bars in Fig. 10(a). In comparison, the avg(SDLL) values of the segments range from 0.435 to 2.247. 
Segment II-23 has the poorest vertical track condition with the highest avg(SDLL) value. The following four track segments are II-22, I- 
10, II-16, and I-23, in descending order of severity. In addition, the changing patterns of track quality evaluated by CoSD and avg(SDLL) 
are almost similar, as indicated by the arrows in Fig. 10(a and b). The Pearson correlation between CoSD and avg(SDLL) is 0.81. 
Furthermore, a similar distribution of their corresponding histograms of both indices can be observed. These findings align with the 
finding from Ref. [25] that the vertical track quality highly dominates the overall track quality. Hence, this study mainly focuses on the 
vertical track quality to represent overall track quality.

4.1.2. Comparison between avg(SDLL) and EnVTQI
The vertical track quality evaluated by EnVTQI for each case study track segment, calculated with an equal weight of 0.2 for each 

feature, is shown in Fig. 10(c). We observe that avg(SDLL) and EnVTQI indicate some segments have similar patterns. For instance, in 
Track-II, the track quality increases from II-16 to II-20, then the track quality drops from II-21 to II-23, and the track quality increases 
again in II-24. The Pearson correlation between avg(SDLL) and EnVTQI is 0.91. Moreover, the histogram of EnVTQI shows good 
similarity to the histogram of avg(SDLL).

There are segments of interest when comparing avg(SDLL) and EnVTQI, such as Segments I-11 and I-12. From the perspective of 
longitudinal levels, the vertical track quality of segments I-11 and I-12 can be considered similar since the avg(SDLL) values of I-11 and 
I-12 are 0.464 mm and 0.467 mm, respectively. However, based on the EnVTQI with equally assigned weighting factors in Fig. 10(c), 
the track condition of segment I-11 is more severe than segment I-12 since EnVTQI I− 11 (0.093) is higher than EnVTQI I− 12 (0.064). 
While considering features for determining EnVTQI, as shown in Fig. 11(a-3 – a-6, b-3 – b-6), all ABA-derived features corresponding to 

Fig. 11. Signals corresponding to the track segment: (a) track segment I-11, (b) track segment I-12. Subfigures 1 and 2 are longitudinal levels at the 
left and right rails, subfigures 3 and 4 are SAWPS at the left and right rails, and subfigures 5 and 6 are SAWPB at the left and right rails.
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segment I-11 provide higher values than segment I-12, as shown in Table 3. Considering Figs. 11(a-1, a-2, b-1, b-2), no noticeable 
changes in longitudinal level signals can be found in segments I-11 and I-12. In comparison, changes in SAWPS and SAWPB at track 
positions indicated by the dashed boxes in Fig. 11(a-3and 11a-5) can be noticed, which leads to the higher ABA-derived features of 
segment I-11. These findings suggest that using ABA signals to assess track condition can enhance the standard practice of only 
considering track geometry.

Other locations of interest are I-18 and II-16. EnVTQI indicates that segment I-18 is one of the worst segments, instead of segment II- 
16 as indicated by avg(SDLL). Considering longitudinal levels, as shown in Fig. 12(a-1, a-2, b-1, b-2), it can be noticed from the dash 
boxes in Figs. 12(b-1 and b-2) that segment II-16 provides a higher variation of longitudinal levels than segment I-18. The values of avg 
(SDLL) for II-16 and I-18 are 1.446 mm and 1.118 mm, respectively. In the case of EnVTQI, the SDS and AUCS corresponding to segment 
II-16 are higher than those of segment I-18, as shown in Table 3. While considering the remaining features, as shown in Figs. 12(a-3 – a- 
6, b-3 – b-6), the dashed boxes in Figs. 12(b-3 and b-4) indicate the locations with noticeable SAWPS peaks, which lead to the high 
values of the SDS and AUCS. Thus, according to these features, the worst substructure condition is from segment II-16. However, 
features related to the ballast layer condition, SDB and AUCB, of segment II-18 are significantly higher than those of segment II-16, as 
shown in Table 3. In Figs. 12(a-5 and a-6), dash boxes indicate the locations that cause the high value of these features. The most 
noticeable peaks are located approximately at km 26.42, indicating the most severe spot in the ballast layer of segment II-18. This spot 
significantly dominates the overall track condition, leading to a higher value of EnVTQI I− 18 (0.263) than EnVTQI II− 16 (0.176). 
Regarding relative percentage differences, we observe more considerable variations for I-18 regarding the ballast features, so it is 
reasonable to suggest that the location faces a higher degradation condition. Finally, while EnVTQI provides aggregated information 
about track quality, the values required to calculate EnVTQI allow for identifying problematic track structure layers, allowing the 
physical interpretability of the results.

4.2. EnVTQI under speed variation

ABA signals are speed-dependent, and in operational conditions, it is not possible to conduct ABA measurements with a constant 
speed for the whole railway line. In this subsection, the performance of the method to reduce the effect on speed is investigated. The 
average speed of the instrumented wagon passing by each track segment is calculated. The speed profiles from 2 measurement rounds 
along the case study railway line are shown in Fig. 13(a). It can be noticed that the measurement speeds from the two rounds are 
different, especially from section I-1 to section I-22 and from section II-21 to section II-24. The lowest speed discrepancy is 0.2 m/s at 
segment II-20, while the highest speed variation is 9.7 m/s at segment I-18.

The EnVTQIs calculated from the ABA signals without and with speed influence reduction are shown in Fig. 13(b and c), 
respectively. Without speed correction, considering segments I-10 and I-18 indicated by arrows in Fig. 13(b), EnVTQI corresponding to 
measurement round 1 suggests that the condition of segment I-10 is more severe than that of segment I-18, while EnVTQI corre-
sponding to measurement round 2 suggests the opposite result. The reason for this is that the speed of segment I-10 (23.9 m/s) is higher 
than that of segment I-18 (16.7 m/s) in measurement round 1, while the speeds of both segments can be considered similar (26.6 m/s 
for segment I-10 and 26.4 m/s for segment I-18) in measurement round 2. In measurement round 2, where speed differences can be 
neglected, it can be concluded that the condition of segment I-18 is more severe than that of segment I-10. This is in line with the results 
evaluated by the EnVTQI with speed correction (Fig. 13(c)). This simple example demonstrates the need and the capability of the 
proposed approach to reduce the influence of speed variation.

The total differences of EnVTQIs from the two ABA measurement rounds are 45.8 % if the proposed approach is not utilized. In 
contrast, the total differences are reduced to 6.6 % after utilizing the proposed approach. Significant EnVTQI differences still exist in 
some track segments, for example, segment II-22, indicated by an arrow in Fig. 13(c).

4.3. Influence of weight factors on EnVTQI

Different assigned weight factors allow users to tune the importance of features that are α1 for SDLL related to longitudinal levels, α2 

Table 3 
Parameters corresponding to considered track segments.

Parameter Description I-11 I-12 Relative difference 
(%)

Ratio 
I-11: I- 
12

I-18 II-16 Relative difference 
(%)

Ratio 
I-18: II- 
16

avg(SDLL) the average of the standard 
deviation of LLr

0.464 0.467 0.6 0.99 1.119 1.446 29.2 0.77

SDLL the rescaled of avg(SDLL) 0.061 0.062 1.6 0.98 0.303 0.425 40.3 0.71
SDS the rescaled of avg(SDS) 0.023 0.010 56.5 2.30 0.035 0.070 100.0 0.50
AUCS the rescaled of avg(AUCS) 0.038 0.027 28.9 1.41 0.081 0.106 30.9 0.76
SDB the rescaled of avg(SDB) 0.017 0.006 64.7 2.83 0.431 0.018 95.8 23.94
AUCB the rescaled of avg(AUCB) 0.326 0.216 33.7 1.51 0.463 0.263 43.2 1.76
EnVTQI the enhanced vertical track quality 

index
0.093 0.064 31.2 1.45 0.263 0.176 33.1 1.49
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Fig. 12. Signals corresponding to the track segment: (a) track segment I-18, (b) track segment II-16. Subfigures 1 and 2 are longitudinal levels at the 
left and right rails, subfigures 3 and 4 are SAWPS at the left and right rails, and subfigures 5 and 6 are SAWPB at the left and right rails.

Fig. 13. Comparison of EnVTQI between 2 rounds of ABA measurement: (a) measurement speeds from 2 rounds at a particular segment, (b) EnVTQI 
from ABA signals without reducing the influence of speed variation, (c) EnVTQI from ABA signals with reducing the influence of speed variation.
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for SDS and α3 for AUCS related to the condition of the substructure layer, α4 for SDB and α5 for AUCB related to the condition of the 
ballast layer. Tuning weight factors makes EnVTQI better reflect track condition for a particular application, such as tamping, and 
better match the characteristics of a particular railway line. In this section, characteristics of EnVTQI regarding various assigned 
weight factors are investigated.

Fig. 14 shows the EnVTQI of 48 case study segments based on various combinations of weight factors, in which one weight is set to 
1.00, and the remaining weights are set to 0.00. The results demonstrate that different weight factor combinations yield different 
EnVTQI characteristics, indicating the differences in sensitivity of specific features and ballast and substructure conditions.

Three combinations of weight factors are tested, and their corresponding EnVTQI are shown in Fig. 10. Firstly, equal weight factors 
of 0.20 are assigned to all features, and EnVTQI can be found in Fig. 10(c). Secondly, 70 % of the total weight is assigned to 
substructure-related features. The weight factors of rescaled SDS and AUCS are 0.35 each, while the weight factors of the remaining 
features are 0.10 each. The corresponding EnVTQI to this configuration can be found in Fig. 10(d). Lastly, 70 % of the total weight is 
assigned to ballast-related features. Weight factors of 0.35 are assigned to rescaled SDB and AUCB, while the remaining features are 
assigned a weight factor of 0.10. The results of EnVTQI corresponding to this weight configuration are shown in Fig. 10(e).

By determining the 10 % of track segments with the highest EnVTQI, the same five segments, II-23, II-22, I-18, I-10, and I-23, are 
indicated by EnVTQI from three different weight configurations. Differences in the severity ranking and the magnitude of EnVTQI can 
be observed and shown in Table 4. In the case of high-weight factors assigned to substructure-related features, the severity of segments 
II-23 and II-22 are more distinguishable. In the case of high-weight factors assigned to ballast-related features, segment I-18 is in the 
second rank, and its EnVTQI magnitude is close to segment II-23, the most severed segment. This finding agrees with the finding in 
Section 4.1.2 that a high SAWPB peak can be found at segment I-18.

4.4. Evolution of EnVTQI over time

Fig. 15 shows historical longitudinal levels on a track that suggests a degradation pattern near the bridge from 2018 to 2021. The 
track quality in terms of avg(SDLL), shown in Fig. 16(b), continuously increased from 1.423 in 2018 to 2.742 in 2020 and then 
significantly dropped to 1.168 in 2021, meaning an improvement in track quality. This finding suggests that the major track main-
tenance activities were conducted between 2020 and 2021.

Considering features from the available ABA signals measured in 2018, 2019, and 2021, drastic changes in SAWP can be observed 
near the bridge, as shown in Fig. 16(a). Extracted features from SAWPS and SAWPB indicate the same trend as the longitudinal levels, 
where the feature values increase between 2018 and 2019 and later decrease in 2021, as shown in Fig. 16(b). These changes over time 
resulted in the evolution of EnVTQI following a similar pattern. The EvTQI with equal weight factors for all inputs increased by 67.4 % 

Fig. 14. EnVTQI of the case study track segments in 2019 regarding different weight factors. Red bars indicate track segments with the worst 10 % 
of all considered segments.
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Table 4 
The 10 % track segments with the highest EnVTQI.

Severity rank 1 to 5 from higher to lower severity Segment and its EnVTQI

Equal weight 70 % of the weight on substructure features 70 % of the weight on ballast features

1 II-23 0.539 II-23 0.646 II-23 0.386
2 II-22 0.405 II-22 0.505 I-18 0.355
3 I-18 0.263 I-23 0.161 II-22 0.271
4 I-10 0.222 I-18 0.160 I-10 0.231
5 I-23 0.206 I-10 0.157 I-23 0.200

Fig. 15. Evolution of longitudinal levels from 2018 to 2021.

Fig. 16. (a) SAWPS and SAWPB at the left and right rails from 3 different measurement years, (b) the evolution of EnVTQI and the corresponding 
features over time.
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in 2019, showing worse track conditions than in 2018, and decreased by 57.4 % in 2021, indicating better track conditions than in 
2019.

To support the abovementioned statement, the historical satellite images from 2018, 2019, and 2021, as shown in Fig. 17, suggest 
evidence of track maintenance activities. Even though the exact types of track maintenance cannot be indicated, the changes in ballast 
appearance over time are due to new ballast placement, according to our track investigation in 2021. Differences in the satellite images 
between 2018 and 2019 indicate minor maintenance activities, especially near the bridge. Additionally, relatively major activities 
were conducted in 2021 since the widespread difference in ballast appearance between 2019 and 2021 can be observed, resulting in a 
significant improvement in track quality in 2021.

5. Conclusions and suggestions for further works

A framework for designing an enhanced vertical track quality index, EnVTQI, is proposed. The proposed framework integrates 
features derived from longitudinal levels and ABA signals, in which two wavelengths of ABA signals are considered to identify track 
conditions at the substructure and ballast layers. In addition, this framework can be applied to railway networks with various mea-
surement conditions, such as measurement speeds, because of the proposed approach to reducing the influence of speed variation. The 
performance of EnVTQI is evaluated using measured datasets of the Dutch railway line by comparing EnVTQI with avg(SDLL), an EN 
standard vertical TQI. The track condition of the study line is generally good. EnVTQI captures local changes in the condition of 
substructure and ballast layers, making it possible to perform better in indicating segments with poor track condition, including the 
effect of both deviations in track geometry and dynamic responses. The proposed method to reduce the influence of variation in 
measurement speeds on ABA features is based on an empirical approach and allows the use of the EnVTQI considering train in normal 
operations.

As part of future research, CoSD, the overall track quality index according to EN 13848-6, was developed based on longitudinal 
level, alignment, gauge, and cross level. Those track geometry parameters correspond to the condition of railway tracks in both vertical 
and lateral directions. Therefore, an enhanced TQI derived from vertical, lateral, and longitudinal train-track interaction could be 
considered. This is important for the analysis of curves. In addition, long-term periodic change trend analysis with further validation 
campaigns in various locations under various measurement conditions is to be considered. Finally, efforts towards standardizing this 
method for the use of vehicle responses to improve TQIs are required.
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