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A B S T R A C T

Microgrids (MGs) are sustainable solutions for rural zone electrification that use local renewable resources.
However, only careful planning at the start of an MG project can ensure its future optimal operation. In
this paper, a novel methodology for MG planning by using the uncertainty characterization of renewable
resources and demand is presented. Additionally, a model of electricity consumption is proposed and applied
in an isolated rural community. In such communities, consumption patterns typically need to be derived
as model inputs because consumption measurements are not available for the planning stage. To obtain
these inputs, clustering algorithms based on self-organizing maps (SOMs) and fuzzy c-means are used to
classify the families of the community given sociodemographic information obtained via surveys. Subsequently,
Markov chains (MCs) are employed to generate consumption patterns based on consumption measurements in
some dwellings and surveys applied to the community. The nonlinearities and uncertainties associated with
renewable resources and consumption are modeled by using prediction interval (PI) models. These PI models
provide the required consumption and generation scenarios for deriving the optimal sizing and topological
information to address the MG planning problem. The results of the robust planning approach based on
scenarios are useful at the feasibility and design phases of an MG project. The proposed methodology is
successfully applied to MG planning for a rural Mapuche community, where a conservative criterion was
considered to minimize the investment risk. This criterion corresponds to the worst-case scenario in which the
demand increases by 19.9% compared to that of the baseline scenario and a lower energy cost is obtained.
However, the net present cost and operational costs increase by 14% and 11.75% compared to those of the
baseline scenario, respectively.
1. Introduction

1.1. Motivation

Electrification in rural zones influences local development by re-
ducing rural-to-urban migration and by benefiting productive develop-
ment, access to essential services such as health care and education, and
the eradication of poverty (Ferrer-Martí et al., 2012; Niez, 2010; Pereira
et al., 2010). Using nonconventional renewable energies (NCRE) as
energy sources has a low environmental impact and supports the
sustainability of rural areas (Ferrer-Martí et al., 2012; Leary et al.,
2012). NCRE sources also have lower operation and maintenance costs
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than those of traditional electrification projects, making them an at-
tractive solution for isolated rural communities (Ubilla et al., 2014).
Furthermore, microgrids (MGs) are low voltage controllable systems
that integrate NCRE resources with small, distributed energy resources
and manage generation, loads and energy storage (Lasseter, 2002).
Although there is vast international experience in installing MGs in
urban and rural areas (Del Carpio Huayllas et al., 2010; Vallvé, 2010),
ensuring optimal operation during the whole life cycle of MGs remains
a challenge.

One aspect of that challenge is the planning process. Planning is a
relevant part of the design of an MG solution. A complete analysis of
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recent and future consumption is needed, as well as an evaluation of
various options for energy generation, where the costs should be widely
considered. Thus, an efficient planning model is needed. For MG design,
a deterministic, stochastic or robust optimization approach can be
taken. The deterministic approach considers the average dynamics or a
single realization of the stochastic processes. However, performance is
guaranteed only at the operation point with small variations, making
the MG design quite conservative and not optimal for a broad range
of instances. The stochastic and robust approaches include uncertainty
in the optimization; this guarantees good performance under a broader
set of instances. In this paper, a robust planning approach based on
scenarios is considered. The scenarios are generated from the uncer-
tainty characterization based on fuzzy and neural prediction intervals
of consumption profiles and renewable resources that are required for
MG planning. Thus, this paper contributes to improving the feasibility
and robustness of MG planning based on scenarios.

1.2. Literature review

In that context, the main task of MG planning is to determine the
optimal size of generation resources with the objective of meeting
the demand, of minimizing the cost, of increasing the reliability, the
efficiency, the autonomy and of reducing greenhouse gases, among
other objectives (Mumtaz & Bayram, 2017). Note that diverse planning
methods, such as optimizing the sizing of energy storage systems to
minimize maintenance and operation costs, have been applied, proving
the effect of variations in fuel prices and aligning the use of different
energy sources based on available resources, as well as the cost of
energy that comes from the electrical grid (Mohammadi et al., 2012).
In Yon et al. (2021), an MG planning methodology is presented, which
considers the distributed grid design, optimal location and sizing of
the PV system and battery storage for rural communities. Li et al.
(2020) presents a study to demonstrate the techno-economic feasibility
of an off-grid hybrid renewable energy system for a rural village in
West China. An analysis of combinations of PV panels, wind turbines
and biogas is modeled and optimized using Homer. The selected con-
figuration was determined while ensuring a reliable power supply to
the demand of the village, including the productive demands. The
authors in Kharrich et al. (2018) presented the planning of an isolated
microgrid based on PV generation, wind turbine, diesel generator, and
a battery bank. To obtain the size of the generators that could compose
the microgrid, two objectives were proposed: net present cost (NPC)
and emission reduction benefit cost (ERBC). Multiobjective particle
swarm optimization was used to size the microgrid, and the optimal
solution of the Pareto set at the knee point was chosen.

The above studies are MG planning methodologies based on a
deterministic approach to optimize the size and location of resources
available in various study cases. The size of the generators and energy
storage system of the microgrids are obtained to achieve the minimum
price with the highest reliability and lowest environmental emission,
among other proposed objectives. However, in those studies, the un-
certainty in the demand and renewable resources is not considered in
the planning process.

On the other hand, Wang et al. (2017) explore the impact of MG
expansion to meet increasing load demand over time. Thus, expansion
planning should be considered when designing an MG project to simul-
taneously increase the economic benefits and to improve the reliability
of MGs. Moreover, technical features should consider integrating poten-
tial new units of generation in the future if needed. In this way, various
authors have created planning models considering the uncertainties in-
duced by both intermittent distributed generators and demand Mumtaz
and Bayram (2017). For instance, the authors in Khodaei et al. (2015)
presented a robust planning approach considering uncertainty in load,
renewable generation, and market prices. The proposed approach was
divided into an investment master problem and an operation subprob-
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lem. The optimal planning obtained by the master problem is used by
the operating subproblem to determine the optimal operation under the
worst-case scenario. In Borghei and Ghassemi (2021), the planning of
microgrids to maximize the resiliency of distribution networks was pre-
sented, and the uncertainty of the energy resources was addressed by
robust optimization based on the worst-case scenario. The performance
of the proposed approach was evaluated by the IEEE 37- and IEEE 123-
bus test systems under several severe fault scenarios. Chen et al. (2022)
presented a planning model for a grid-connected microgrid accounting
for renewable generation uncertainties. The scenarios are obtained
based on the deep convolutional generative adversarial network and
improved k-medoids clustering algorithm. The size of the renewable
resources of the microgrid in the planning process is obtained by
maximizing renewable energy utilization efficiency and minimizing
the economic cost and emissions. Furthermore, a robust model under
budgeted uncertainty provides a pool of MG solutions that depend on
load and generation profiles (Levorato et al., 2022). Regarding the use
of stochastic optimization, Khayatian et al. (2018) proposed a two-stage
stochastic planning optimization to consider the microgrid expansion
problem. The proposed approach aids microgrid companies in deciding
whether they should invest in microgrid installation. The objective of
stochastic programming is to maximize the expected revenue while en-
suring the cost-effectiveness and reliability of the power system under
uncertainty of load growth and variability of renewable resources.

For MG planning, understanding electrical consumption is crucial,
especially when accurate data are not available. Overall, rural com-
munities do not have consumption measurements in all dwellings or
do not have them at all; therefore, estimating load profiles becomes
essential in designing an MG system. For instance, Dominguez et al.
(2021) presents a method that combines data from surveys, climate,
and satellite imagery to estimate the hourly load profiles in East African
rural households. We focus on using a limited number of smart meters
and on implementing computational intelligence methods to estimate
the load profile of the entire community. For this task, a combina-
tion of clustering algorithms and Markov chains (MCs) is considered.
Numerous clustering algorithms have been proposed in the literature
for various purposes. Unsupervised learning models include classic
clustering techniques such as k-means, hierarchical clustering, kernel
k-means and self-organizing maps (SOMs) (Alloghani et al., 2020). In
this work, we compare two of the most common clustering methods:
fuzzy c-means and SOM. The first method allows one piece of data to
belong to one or more clusters with a certain degree of membership.
Thus, fuzzy c-means has been useful in load profile clustering, where a
load profile can belong to several groups simultaneously. For instance,
in Prahastono et al. (2008), this method is applied for clustering
electricity load profiles in Indonesia, considering pattern consumption.
In addition, Anuar and Zakaria (2012) use fuzzy c-means to classify
customers based on load patterns by measuring load profiles from
feeders connected to different customer types. On the other hand, SOMs
have been widely used due to the ease of visualization of clusters
from high dimension input into a lower dimension output space. SOMs
have been used to automatically classify electricity customers based on
their consumption patterns (McLoughlin et al., 2015; Sanchez et al.,
2009) and to study load profiles from known sociodemographic fea-
tures (Richardson et al., 2010). In the case of MGs, the uncertainty in
load behavior complicates the generation of consumption profiles. For
example, in Llanos et al. (2017), SOMs were used to classify customers
given their socioeconomic characteristics; then, the method assigned
deterministic load profiles to different groups of customers to generate
the load profiles required for sizing the MG. However, this approach
considered only one MG sizing and design scenario.

Given the consumer classification by a clustering algorithm, it is
pertinent to consider data with sufficient variability to prevent over-
fitting in the MG planning process and design. In cases with a limited
amount of measured consumption data, the generation of synthetic

consumption profiles is helpful to obtain more data with variability.
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MCs are used in this work, as they have certain features that make them
useful in this context.

MCs are stochastic processes that can capture stationary processes
(Taylor & Karlin, 1984). Approaches based on MCs have been used to
construct occupancy and activity profiles for household residents and
to generate associated load profiles (Richardson et al., 2010; Widén
& Wäckelgård, 2010). One drawback of MC approaches, however, is
the considerable amount of detailed information about the activities of
inhabitants required to build the profiles. In many cases, this detailed
information is unavailable, and it may be considered invasive to even
ask about it from the perspective of user privacy. One alternative is to
use consumption measurements, as in Roje et al. (2017), in which a set
of MCs was adjusted to generate stochastic load profiles characterizing
the consumption of a whole community. However, this approach does
not create variations for independent dwellings, which are helpful
when planning a community MG.

When planning community grids, especially for small communities,
having the most accurate estimate of consumption profiles possible is
essential to define the dimension of the energy resources needed. It has
been found that the smaller a community is, the more difficult it is
to plan the size of the MG because variations are proportionally more
substantial (Llanos et al., 2012).

We propose combining clustering algorithms and MCs to generate
a more accurate method for small-scale MG planning. This method
aims to identify the optimal size and topology of the MG for applica-
tions under various situations and community scenarios. A Mapuche
rural community in southern Chile was selected for this purpose. The
Mapuche are Indigenous people who represent 84.4% of the total
population of indigenous people in Chile (Ministerio de Desarrollo
Social, 2013). The harmony between humans, the natural world and
spirits is part of the Mapuche cosmovision, and MG projects that use
NCRE should fit within their cosmovision worldview.

To generate consumption profiles with added variability, the
dwellings in this small Mapuche community were grouped by using
sociodemographic data. For each group, consumption measurements
from a representative dwelling were obtained. The characterization was
performed with MCs, enabling the simulation of a year of consumption,
while solar and wind potential in the community were determined
with measured data from a weather station in the same community
and mesoscale models. On the other hand, prediction interval models
were identified to characterize the data uncertainty (Khosravi et al.,
2010). A prediction interval gives a value range around the estimated
output of the model, which represents the uncertainty of the demand
and renewable generation. The objective for the construction of pre-
diction intervals is to quantify the uncertainty in the point prediction
to generate multiple scenarios for the best and worst conditions of
the system (Alcántara et al., 2022; Cartagena et al., 2021; Serrano-
Guerrero et al., 2021). With the characterization of the generation
and consumption of the community, the MG units were sized under
various scenarios, considering technical and economic criteria. These
criteria generate significant impacts on the cost of energy (CoE) for the
community, which is government subsidized. For a better comparison
with previous works, in Table 1, we show the methodology of each
reference for load profile generation and for uncertainty characteriza-
tion of the load and renewable resources. Additionally, the comparison
presented in this table is based on the planning methodology of the
MGs: deterministic, stochastic or robust.
1.3. Contributions

Compared to previous works, we propose a robust microgrid plan-
ning methodology based on scenarios that (i) generate consumption
profiles with a clustering method and MCs, (ii) the scenarios required
for microgrid planning are obtained with a prediction interval method
that characterizes the uncertainty of the demand and renewable re-
sources, and (iii) the microgrid sizing approach considers a criterion of
3

social and economic optimization. In view of the presented literature
review, the main contributions of this work are:

• To the best of the authors’ knowledge, this is the first paper that
combines clustering methods (fuzzy c-means and SOMs) with MCs
to generate consumption profiles with added variability required
for MG planning.

• Using clustering methods enables a reduction in instrumentation
for consumption measurements as they are clustered, thereby re-
ducing the initial cost of the design compared to that of installing
smart meters in every dwelling.

• The use of fuzzy and neural prediction intervals based on scenar-
ios contributes to generating study scenarios of consumption and
generation that improve the feasibility and robustness of an MG
planned to be implemented in the studied community.

• This proposed robust planning approach considers a criterion of
social-economic optimization that considers the global welfare of
the community and society.

This paper is organized as follows: Section 2 presents the novel
methodology for load profile generation with clustering algorithms
(fuzzy c-means and SOMs) and MCs. Section 3 derives prediction
intervals for modeling the various scenarios of the energy resources
and demand of the MG, and the section includes the MG planning
methodology-based social/economic criteria under these scenarios. Sec-
tion 4 shows the application of the described methods in the case study.
Finally, Section 5 presents the main conclusions and future work that
may be done to extend and to verify this project for other applications.

2. Load profile generation based on cluster algorithms and Markov
chains

This section presents the proposed method for the generation of
load profiles for sizing MGs, considering the variability in consumption.
First, the dwellings were classified into clusters according to sociode-
mographic information obtained through the use of short surveys of
each family group in the community. In this work, two unsupervised
methods were evaluated: fuzzy c-means and SOM (Greene et al., 2008;
Llanos et al., 2017). The goal of using an unsupervised model is to
group dwellings into a set of clusters based on the similarity of their
features. These clusters are then useful to the generation of load profiles
in the community. As each model produces different groups, these are
analyzed to choose the more appropriate solution in the next step.

Subsequently, one dwelling per cluster was selected based on the
availability of occupants. Then, based on the electrical consumption
information of the representative household, first-order discrete finite
MCs were used to generate load profiles. Finally, together with the elec-
trical consumption of common spaces and productive demand, a repre-
sentative stochastic community-consumption data set was obtained for
a year.

2.1. Load pattern classification based on clustering algorithms

Fuzzy c-means follows an iterative process to minimize an objec-
tive function. This process considers numerical values from different
features to find cluster center points, and in each iteration, the center
is updated. The iterations consider the distance from all data to a
cluster center, weighted by the degree of membership (Nayak et al.,
2015; Ruspini et al., 2019). In contrast, SOM is a type of artificial
neural network that is trained to produce a low-dimensional (typically,
two dimensional) discretized representation of the input (Jovanović &
Hikawa, 2022). This is a positive advantage of SOM, providing easily
interpretable results. Additionally, this approach has gained popularity
in many areas, and some authors have implemented this method for
load profile generation purposes (Asan & Ercan, 2012). In addition,
SOMs have the capacity to classify complex patterns (Kohonen, 1990;
Kohonen et al., 2000). This grouping is performed by the projection
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Table 1
Comparison between existing planning methods with our proposed approach.

Ref Load profile generation Uncertainty characterization Planning
methodology

Yon et al. (2021) Assume that the load profile is
known

Does not consider uncertainties Deterministic

Li et al. (2020) Estimate data from data of a
similar rural area

Does not consider uncertainties Deterministic

Kharrich et al.
(2018)

Data is given Does not consider uncertainty Deterministic

Wang et al. (2017) Given hourly data Uncertainty of load is considered using
the standard deviation (𝜎 = ±10%) to
generate two scenarios

Robust

Khodaei et al.
(2015)

Given hourly data The load and renewable generation
uncertainty is included considering
forecast errors of ±10% and ±20%

Robust

Borghei and
Ghassemi (2021)

Data is given A worst-case estimation of renewable
generation is considered using historical
data (generation and climatic)

Robust

Chen et al. (2022) Data is given Uncertainty of renewable generation
using generative adversarial network
based on historical data

Robust

Khayatian et al.
(2018)

Data is given Uncertainties in demand and component
outages are considered using the latin
hypercube Sampling method

Stochastic

Levorato et al.
(2022)

Given hourly data Uncertainty in demand and renewable
generation considering a budget
uncertainty set to control the level of
conservatism

Robust

Our proposed
approach

SOM and Markov Chains Including prediction intervals with NN
and fuzzy models

Robust
2
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Table 2
Relevant features for consumption characterization by family.

Feature Characteristic Description

Number of youths Age Range Less than 18
Number of adults Age Range Between 18 and 60
Number of seniors Age Range More than 60
Number of students Activities Students
Number of workers Activities Fulltime workers
Number of farmers Activities Dedicated to agriculture
Number of housekeepers Activities Housekeeping activities
Number of retired or unemployed Activities Without a job

of an input space 𝑉𝑖 on the output space 𝑉𝑜 (generally of a lower
dimension), defined as a set of neurons over a line or rectangular or
hexagonal plane. The more dissimilar the input observations are, the
more separated their projections in the output space. By using this
method, different characteristics are compared for each cluster, and
data with similar behavior are grouped.

After the training process described in Kangas and Kohonen (1996)
and given an input vector �⃗� = (𝑥1,… , 𝑥𝑛), SOMs activate neuron 𝑗 in
the output space if the weight vector �⃗�𝑗 = (𝜔𝑗1,… , 𝜔𝑗𝑛) corresponding
to that neuron has the shortest (Euclidean) distance to the input vector
�⃗�. To visualize the resulting classification, the unified distance matrix
(U-matrix) is the most popular method (Ultsch & Siemon, 1990), where
long and short distances between neurons are represented with dark
and light colors, respectively.

To group dwellings, information from their sociodemographic char-
acteristics is needed. According to Llanos et al. (2017), Richardson
et al. (2010), Yamaguchi et al. (2011), three characteristics are directly
related to consumption patterns: members, as the number of people
living in the dwelling affects the consumption; age range because the
behavior of the inhabitants is related to age; and activities, which
provide an indication of occupancy in the dwelling. By using these char-
acteristics, eight relevant features (Table 2) are retrieved from surveys
and expressed for each dwelling in the input vector �⃗� = (𝑥1,… , 𝑥8).

Fuzzy c-means and SOM algorithms were used to group the
wellings into clusters. Then, a meter was installed in one dwelling
f each group, and the measurements taken from these houses made it
4

𝑐

possible to estimate various load profiles with MCs, as explained in the
next section. As we have two different clustering algorithms, we can
evaluate the results given by these two models and select which gives
the best approximation to the real monthly consumption given by the
utility company by using the normalized mean absolute error (NMAE).

.2. Load generation based on Markov chains

Once the clustering is obtained, as presented in the previous section,
he measured consumption data of each of the clusters are used to
enerate representative synthetic demand profiles, which consider the
ariability of the data to be used for MG planning. For this work,
Cs are used since they correspond to stochastic models that generate
sequence of events with different transition probabilities that are

btained based on the measured consumption, ensuring (with a certain
egree of confidence) correlated behavior in the original data.

According to Levin and Peres (2017), MCs are processes that change
heir values between elements in a finite set 𝜔. Each of these elements is

known as a state that represents a particular variable. The transition be-
tween elements is determined by 𝑝𝑖𝑗 , that is, the transition probability
of moving from state i to state j. The probabilities �̂�𝑖𝑗 are calculated with
the maximum likelihood estimator as (Anderson & Goodman, 1957):

�̂�𝑖𝑗 =
𝑛𝑖𝑗
𝑛𝑖

∀𝑖 = 1…𝑚, 𝑗 = 1…𝑚, (1)

where 𝑛𝑖𝑗 is the amount of data that has transitioned from a state 𝑖 to
a state 𝑗, while 𝑛𝑖 =

∑𝑚
𝑗=1 𝑛𝑖𝑗 . Then, the transition probabilities �̂�𝑖𝑗 are

stored in the transition matrix of dimension 𝑚 × 𝑚, with m being the
number of states of the chain.

To validate that the MCs model the consumption within each hourly
block (consisting of the set 𝑆𝑞 , explained later), it is necessary to prove
that their transition probabilities are constant within each set 𝑆𝑞 ; that
is, �̂�𝑖𝑗 = �̂�𝑖𝑗 (𝑡) ∀𝑡.

First, to determine the 𝑚 number of states of each MC, Markov’s
inequality is used according to the procedure in Navarrete (2014),
where an upper bound of 𝑚 is obtained. The proof of this process can
be found in Appendix A.

Starting with a high number of states 𝑚, we verified whether
∗ ∗ ∗
(𝑛𝑖) ≤ 𝑝 ∀𝑖, where 𝑝 and 𝑡 are design parameters (with 𝑝 being
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Fig. 1. Diagram of consumption generation.
the probability that |𝑝𝑖𝑗 − �̂�𝑖𝑗 | is greater than or equal to a threshold 𝑡),
𝑛𝑖 is the amount of data that belongs to state 𝑖, and 𝑐(𝑛𝑖) is defined as:

𝑐(𝑛𝑖) = min
{

1, 2𝑒−2𝑛𝑖𝑡
2
, 1
4𝑛𝑖𝑡2

}

(2)

If 𝑐(𝑛𝑖) ≤ 𝑝∗ is false, the maximum number of states 𝑚 is reduced by
one. When the condition is true ∀𝑖, the maximum number of states 𝑚∗

that makes the chain valid is obtained.
A collection of MCs is chosen for each identified class given by

the clustering method following the procedure in Roje et al. (2017),
seeking to explain the consumption patterns throughout the day. Each
MC (where the states are power consumption, in [kW]) is valid within
a time window that minimizes the intragroup quadratic error, defined
by:

𝑚𝑖𝑛(𝐽 )
𝑙1 ...𝑙𝑠

=
𝑠
∑

𝑞=1

∑

𝑥∈𝑆𝑞

‖

‖

‖

𝑥 − 𝑢𝑞
‖

‖

‖

2
,where 𝑢𝑞 =

1
𝑁𝑞

∑

𝑥∈𝑆𝑞

𝑥 (3)

where x is the data to be grouped, 𝑆𝑞 is the data set that defines
the time windows with 𝑞 ∈ {1...𝑠}, s is the number of time windows
selected, 𝑙1...𝑙𝑠 is the obtained hourly limits defined by 𝑆𝑞 , 𝑁𝑞 is the
number of elements in the set 𝑥 ∈ 𝑆𝑞 , and 𝑢𝑞 is the average of the data
x in the set 𝑆𝑞 .

To determine the power values of these states, the k-means algo-
rithm (MacQueen, 1967) with 𝑚∗ clusters over the power consumption
within the time window was performed, selecting the centroids as the
values for the states.

Although the proposed use of MCs does not represent seasonal
variations or changes in demand habits, it does generate profiles with a
representative variability of the measured data. This proposal enables
us to obtain different consumption levels and scenarios, which is useful
for MG planning. Fig. 1 summarizes the steps used to generate the
synthetic load profiles.

First, data collected from surveys are used to create groups of
dwellings (classes) by using a clustering method (SOM or fuzzy c-
means). In step 2, a representative dwelling is selected for each of
the identified classes, and its consumption is measured for a certain
period. For each of these measurements, the data are divided into sets
5

of consecutive time groups, and for each one, the number of states of
the MC, such that it is statistically representative, is determined (step
3).

Once this process is finished, in step 4, synthetic consumption
profiles with MCs are generated for 365 days for each of the classes
identified through clustering. These profiles are associated with each of
the dwellings present in the community and then aggregated to obtain a
community demand profile, which is validated (step 5) and used for MG
planning. The following section presents the prediction interval models
for generating scenarios and the proposed optimization used in the MG
planning process.

3. Microgrid planning based on modeling of uncertainty of renew-
able resources and load

This section presents an optimization approach for MG planning
based on scenarios. The prediction interval (PI) models ensure, with a
certain coverage probability, that the trajectories of the renewable re-
sources (wind and solar) and demand consumption (the latter explained
in Section 2) are included in the interval defined by the upper and
lower bounds; thus, the scenarios were defined by these bounds. The PI
models developed in this paper were adopted from the study presented
in Marín et al. (2019) and are included here for self-containment. For
this approach, we use the concept of fuzzy numbers to obtain PI models
based on fuzzy systems and a neural network, which are explained next.

3.1. Prediction interval models based on Fuzzy numbers

When an affine linear model is used to obtain a prediction model
by using a finite quantity of measured data, the prediction output �̂�(𝑘)
at time 𝑘 is defined as follows:

�̂�(𝑘) = 𝜃𝑜 + 𝜃1𝑧1(𝑘) +⋯ + 𝜃𝑝𝑧𝑝(𝑘), (4)

where 𝜃𝑖 are the regression coefficients and 𝑧𝑖(𝑘) (𝑖 = 0, 1,… , 𝑝) are
the input measurement data at time step 𝑘. To account for uncertainty,

the coefficients 𝜃𝑖 are defined as interval fuzzy numbers (Lee, 2005;
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Mendel, 2017). Uncertainty is related to the error between the predic-
tion �̂�(𝑘) and the actual output 𝑦(𝑘), and it is defined by the interval
[�̂�𝐿, �̂�𝑈 ] in which the predicted value may lie.

The parameters 𝜃𝑖 are defined by interval fuzzy numbers, and
therefore, they are characterized by the mean (𝑚) and spread (𝑠). The
uncertainty of the expected value is characterized by using different
spread values, i.e., 𝜃𝑖 = [𝑚𝑖 − 𝑠𝑖, 𝑚𝑖 + 𝑠𝑖]. The lower bound (�̂�𝐿) and
upper bound (�̂�𝑈 ) that define the PI are obtained by the theorem of the
affine combination of type-1 interval fuzzy numbers (Karnik & Mendel,
2001; Mendel, 2017), as follows:

�̂�𝐿(𝑘) =
𝑝
∑

𝑖=1
𝑚𝑖𝑧𝑖(𝑘) + 𝑚0 −

𝑝
∑

𝑖=1

|

|

𝑧𝑖(𝑘)|| 𝑠𝑖 (5)

�̂�𝑈 (𝑘) =
𝑝
∑

𝑖=1
𝑚𝑖𝑧𝑖(𝑘) + 𝑚0 +

𝑝
∑

𝑖=1

|

|

𝑧𝑖(𝑘)|| 𝑠𝑖 (6)

The expected value is characterized by the mean (𝑚𝑖), as shown
in (5) and (6), and the uncertainty of the PI is characterized by the
parameters (𝑠𝑖, 𝑠𝑖) of the last term in both equations.

In this PI modeling approach, the mean values of the parameters
𝑚𝑖) associated with providing the expected value �̂�(𝑘) are obtained

by using an appropriate model identification procedure, and the pa-
rameters determine which prediction model is used: fuzzy system or
neural network. The parameters 𝑠𝑖 and 𝑠𝑖 are tuned to guarantee the
desired coverage probability (1 − 𝛼)% with the smallest interval width.

he proposed method for identifying these parameters (spreads) is
escribed in Marín et al. (2019). Finally, the PI provides the expected
alue �̂�(𝑘) and the values of the upper (�̂�𝑈 ) and lower (�̂�𝐿) bounds
ccording to the desired coverage probability. In the next section,
oth fuzzy and neural network PI models based on fuzzy numbers are
resented.

.1.1. Fuzzy prediction interval modeling
In the fuzzy PI model based on fuzzy numbers, the parameters of

he consequences (𝜃𝑗𝑖 ) of each rule (𝑗 = 1,… ,𝑀) are defined by fuzzy
umbers. Thus, the lower (�̂�𝑗𝐿) and upper (�̂�𝑗𝑈 ) output of the fuzzy
nterval for each rule (𝑗) are given by the following bounds:

�̂�𝑗𝐿(𝑘) =
𝑝
∑

𝑖=1
𝑚𝑗
𝑖 𝑧𝑖(𝑘) + 𝑚𝑗

0 −
𝑝
∑

𝑖=1

|

|

𝑧𝑖(𝑘)|| 𝑠
𝑗
𝑖 (7)

�̂�𝑗𝑈 (𝑘) =
𝑝
∑

𝑖=1
𝑚𝑗
𝑖 𝑧𝑖(𝑘) + 𝑚𝑗

0 +
𝑝
∑

𝑖=1

|

|

𝑧𝑖(𝑘)|| 𝑠
𝑗
𝑖 (8)

In (7)–(8), 𝑚𝑗
𝑖 are the mean values, and 𝑠𝑗𝑖 , 𝑠

𝑗
𝑖 are the spread values

f the parameter 𝜃𝑗𝑖 of each rule (𝑗) associated with a set of 𝑝 inputs
𝑧1(𝑘) ∈ 𝑍1,… , 𝑧𝑝(𝑘) ∈ 𝑍𝑝) at time 𝑘. Then, the global bounds of the
uzzy PI are obtained as follows:

�̂�𝐿(𝑘) =
𝑀
∑

𝑗=1
𝛽𝑗 (𝑍(𝑘))�̂�𝑗𝐿(𝑘) (9)

�̂�𝑈 (𝑘) =
𝑀
∑

𝑗=1
𝛽𝑗 (𝑍(𝑘))�̂�𝑗𝑈 (𝑘) (10)

here 𝛽𝑗 (𝑍(𝑘)) is the normalized activation degree. In this approach,
fuzzy clustering method is considered to define the rule numbers

nd the parameters (center and standard deviation) of the Gaussian
embership functions of the antecedents. The means (𝑚𝑗

𝑖 ) of the con-
equences are estimated by the minimum least-squares optimization
ethod (Cartagena et al., 2021). Finally, the spreads (𝑠𝑗𝑖 , 𝑠

𝑗
𝑖 ) are ob-

tained by solving the unconstrained optimization problem presented
in Marín et al. (2019).

3.1.2. Neural network prediction interval modeling
Similar to the approach followed for the fuzzy PI presented above,

this section describes a PI based on fuzzy numbers by using neural net-
works. In this approach, the network weights are modeled as interval
fuzzy numbers.
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The output of the neural network at time 𝑘 is defined as follows:

�̂�(𝑘) =
𝐿
∑

𝑗=1
𝑤0

𝑗

(

tanh

( 𝑝
∑

𝑖=1
𝑤ℎ

𝑗,𝑖𝑧𝑖(𝑘) + 𝑏ℎ𝑗

))

+ 𝑏0 (11)

where 𝑧𝑖(𝑘) is the set of 𝑝 inputs (𝑧1(𝑘) ∈ 𝑍1,… , 𝑧𝑝(𝑘) ∈ 𝑍𝑝) and
𝑗 = 1,… , 𝐿, and 𝐿 is the number of hidden layer units. The neural
network in (11) can be written as follows:

�̂�(𝑘) =
𝐿
∑

𝑗=1
𝑤0

𝑗 �̃�𝑗 (𝑘) + 𝑏0 (12)

where:

�̃�𝑗 (𝑘) = tanh

( 𝑝
∑

𝑖=1
𝑤ℎ

𝑗,𝑖𝑧𝑖(𝑘) + 𝑏ℎ𝑗

)

(13)

The PI based on a neural network is developed such that the output
weights (𝑤0

𝑗 ) are considered interval fuzzy numbers with means (𝑚𝑗 )
and spreads (𝑠𝑗 , 𝑠𝑗 ). Therefore, the lower (�̂�𝐿) and upper (�̂�𝑈 ) bounds of
he interval are calculated as follows:

�̂�𝐿(𝑘) =
𝐿
∑

𝑗=1
𝑚𝑗�̃�𝑗 (𝑘) + 𝑏0 −

𝐿
∑

𝑗=1

|

|

|

�̃�𝑗 (𝑘)
|

|

|

𝑠𝑗 (14)

�̂�𝑈 (𝑘) =
𝐿
∑

𝑗=1
𝑚𝑗�̃�𝑗 (𝑘) + 𝑏0 +

𝐿
∑

𝑗=1

|

|

|

�̃�𝑗 (𝑘)
|

|

|

𝑠𝑗 (15)

To train this PI model, two identification routines must be executed.
The first training procedure is responsible for identifying mean (𝑚𝑗 )
parameters and consists of a traditional setup for neural network regres-
sion consisting of least means square optimization through stochastic
gradient descent via the backpropagation algorithm (Cartagena et al.,
2021). The second procedure obtains the spreads (𝑠𝑗 , 𝑠𝑗 ) by solving the
unconstrained optimization problem presented in Marín et al. (2019).

The PI models presented in this section are used to predict the
expected values and to characterize the uncertainty of the renewable
resources and load. The intervals are used to generate several scenarios
(for example, a worst-case scenario, given by the PI upper bound of con-
sumption and PI lower bound of generation), which can be used in an
optimization problem to define the appropriate microgrid topologies.
Next, the optimization problem for MG planning is presented.

3.2. Microgrid planning

The MG operation, in general, should perform optimally in all its ob-
jectives: economic, technical, environmental, among others (Guo et al.,
2016; Hafez & Bhattacharya, 2012; Khodaei et al., 2015; Su et al., 2010;
Ubilla et al., 2014). This criterion is adjusted to the methodologies used
by the National Public Investment System of Chile and, in particular,
to the Methodology for the Formulation and Evaluation of Rural Elec-
trification Projects provided by its Ministry of Social Development and
Family (Ministerio de Desarrollo Social y Familia, 2022), which allows
determining the dimensioning of that MG alternative among the various
feasible energy supply solutions. The latter provides the supply in the
most efficient way to the population of the locality in which the project
is implemented. Thus, the various MG alternatives must be evaluated by
using a cost-efficiency approach since Chilean public policy has defined
the need and duty of the state to provide energy to all rural sectors.

Regarding the technical feasibility, all the MG alternatives must
cover the recent and projected demand of the population with the
energy resources available in the study locality considering the useful
life and constraints and technical characteristics of each piece and
equipment of the MG, among other design considerations.

Regarding social feasibility, it is important to determine the degree
of acceptance of each technically feasible alternative by the community;
therefore, citizen participation activities are essential.

Regarding the economic feasibility, we must consider the invest-
ment, operation (including fuel), maintenance and replacement costs of
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Fig. 2. Diagram of consumption generation.
each piece of equipment and component of the MG, in addition to the
positive and negative externalities caused by its implementation (for
example, reduction of CO2), and the discount rate, which reflects the
opportunity cost of its financing. All costs must be valued at the social
price through the procedure and corrections indicated by the Ministry
of Social Development and Family of Chile (Ministerio de Desarrollo
Social y Familia, 2022) to ensure that the values used reflect the true
cost for society of using economic resources (whether public or private)
during the execution and operation of the project. Finally, the decision
criterion to determine the most convenient alternative corresponds to
the one that presents the lowest net present cost (NPC).

𝑚𝑖𝑛
(

𝑁𝑃𝐶𝑖
)

(16a)

𝑁𝑃𝐶𝑖 = 𝐼𝑖+
𝑛
∑

𝑡=1

𝐶𝑖,𝑡

(1 + 𝑟)𝑡
(16b)

where 𝑖 are the feasible alternatives; 𝑁𝑃𝐶𝑖 is the net present cost
of 𝑖; 𝐼𝑖 is the initial investment of 𝑖; 𝑛 is the evaluation horizon; 𝐶𝑖,𝑡 is
the operation, maintenance and replacement costs of 𝑖 at 𝑡; and 𝑟 is the
discount rate.

Different scenarios were obtained with the approach presented in
this study to analyze the feasibility of the implementation of the
MG. The baseline scenario corresponds to annual measured profiles
of solar irradiance, wind speed and consumption demand obtained
as explained in Section 2. Then, several scenarios are obtained based
on the prediction interval models for renewable resources and con-
sumption for different desired coverage probabilities. The last step in
this method corresponds to selecting the final MG design, relying on
the optimization software HOMER for distributed systems (National
Renewable Energy Laboratory NREL, 2005).

The complete process for the proposed robust microgrid planning
can be visualized in Fig. 2, where it starts with the application of a
characterization survey to the families of the community, from which
the clustering is performed, as described in Section 2.1, that allows the
grouping of similar dwellings and from there, selecting a representative
dwelling for the measuring of electricity consumption data (step I
from the figure). From the obtained data, MCs are tuned to generate
consumption data representative of the dwellings, which can be gen-
erated for the required period (step II), according to Section 2.2. The
consumption data, together with those of variable renewable resources,
prediction intervals (PI) are obtained as described in Section 3.1, to
generate various scenarios of interest (step III), from which simulations
are performed that allow sizing and selecting the most appropriate
microgrid, according to previously defined evaluation and selection
criteria (step IV).
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Fig. 3. Grouping of family types in the community using SOM.

4. Case study

The case study involved an Indigenous Mapuche community, the
José Painecura Hueñalihuen, La Araucanía Region, Chile. Although the
community is connected to the main grid, the quality of service is poor,
with many unscheduled outages.

4.1. Load generation based on clustering and Markov chain methods

The steps described in Section 2 are applied to the survey results
from Table 2 of the 44 dwellings in the community, with these data
used in the SOM and fuzzy c-means configurations. For this case, an
SOM hexagonal plane in 3 rows and 2 columns (6 total neurons)
is obtained by using a U-matrix representation, while fuzzy c-means
creates five clusters (which can be visualized using a PCA algorithm).
The results of both methods are shown in Figs. 3 and 4, specifying
the number of families that belong to each group. Five groups were
obtained by using both clustering methods, each named in the Mapuche
language and sharing common characteristics.

For each case (groups given by fuzzy c-means and SOM), a dwelling
was selected for each of the previously obtained groups. In these
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Fig. 4. Grouping of family types in the community using fuzzy c-means.
Fig. 5. Load profile for the community for 4 days of SOM-MC simulation.

dwellings, measurements were obtained with a sample time of 1 h for a
period of approximately 60 days by using smart meters. These records
were used in MCs. A heuristic analysis of the measured data showed
between two and three levels of consumption (roughly low, medium,
and high consumption) throughout the day, depending on the dwelling
class. These consumption levels are obtained by the application of (3),
which minimizes the intragroup error. Generally, high, medium, and
low consumption are observed in the evening, afternoon, and early
morning, respectively. Each identified consumption level from each
group has a particular MC, and the range of time in which this MC is
valid depends on the minimization of (3). Next, the maximum quantity
of valid states for each MC was determined with the procedure of (2),
setting the design parameters to 𝑟 = 0.25 and 𝑝∗ = 0.25 and the initial
maximum quantity of states 𝑚 = 8 for each selected time window. The
results of the application of this procedure are shown in Table 3 for
each group, where 𝑚1, 𝑚2, and 𝑚3 are the numbers of time windows
and the values are the numbers of states for each.

The resulting MCs were defined with their transition matrices (�̂�𝑖𝑗 )
and centroids 𝑢𝑖 representing the power values for each state obtained
by the fuzzy c-means algorithm. With these parameters, several realiza-
tions of the MC were performed, obtaining different load profiles for
8

Table 3
Number of states of the obtained MCs.

Group name No. of Time windows No. of states

𝑚1 𝑚2 𝑚3

Nawel 2 3 1 –
Kura 3 7 3 3
Lafken 3 2 3 2
Guru 3 3 3 4
Pangui 2 8 8 –

each of the identified classes, based on which the consumption for each
dwelling was simulated.

In addition to residential consumption, there was community con-
sumption corresponding to the school, which was highly predictable
and differed between workdays and weekends, with a peak power of
216 [W] and 16 [W], respectively. Thus, the average consumption of
the school was added to the residential consumption to obtain the over-
all community consumption. As the consumption varied throughout
the year, the load profiles were weighted according to the energy con-
sumption at various times of the year by using data obtained from the
electric utility. With these considerations, a simulation for 365 days was
performed for both clustering cases. In this part, the NMAE between the
simulation and the measured data of two months given by the utility
company was used to select the best clustering algorithm. An NMAE of
24.8 for SOM and 25.9 for fuzzy c-means was obtained. Thus, for this
case study, the SOM algorithm was selected as the clustering method.
Fig. 5 shows four days of simulated consumption by using SOM. Fig. 6
shows the averaged data for the simulation (SOM case) and from the
readings of the utility company. The model overestimates the average
load profile, which is desirable for sizing purposes. Moreover, as the
MG scales up, the simulated results should have a lower NMAE as the
aggregated consumption should have lower uncertainty. The obtained
simulation (when using SOM clustering) has a mean consumption of
195.92 [kWh/day], a mean power of 8.16 [kW] and a peak power of
19.51 [kW]. The MC output was used as input for the identification of
the prediction interval model of consumption due to the larger amount
of training data with respect to the measured consumption to avoid
overfitting.

Table 4 provides a general overview of the main features of each
group obtained by the SOM algorithm. Groups obtained by SOM follow
a clear split based on the main features of households, as expected.
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Fig. 6. Averaged load profile for the community.

Table 4
SOM classification of family types.

Group name No. of dwellings No. of family
members

Economic activities

Nawel (Tiger) 12 4 or less Retired seniors
Kura (Rock) 7 2 or 3 adults Agriculture
Lafken (Sea) 7 3 (no more than 2

youths)
Agriculture or
housekeeping

Guru (Fox) 12 4 (at least 2 youths) Housekeeping,
agriculture and studies

Pangui (Lion) 6 5 or more (at least
3 adults)

Agriculture or retired

4.2. Prediction interval models for the electrical demand and renewable
generation

The scenarios required for the MG planning process were obtained
by using the PI described in Section 3.1. Thus, linear, fuzzy and
neural network PI models were employed to evaluate the accuracy of
the models. The accuracy corresponds to the PI model that achieves
the desired coverage probability with the sharpest interval because a
narrower width of the PI provides more accurate information about the
modeled uncertainty. The data used to construct the PI models are as
follows:

• Wind speed: 365 measured and estimated days at a sampling
time of 1 h, in [m/s]. The data were measured for 292 days at
5 [m] height and extrapolated using the wind profile power law
to 15 [m]. The ‘‘Explorador Eólico’’1 mesoscale model was used
to complete a whole year. The wind speed was 4.87 [m/s] on
average, and over 75% of the time, it was more than 3 [m/s], the
starting speed of a typical wind turbine. Furthermore, less than
5% of the time, the wind speed was over 12 [m/s], which is the
safety threshold for operation.

• Solar irradiance: 365 measured and estimated days at a sampling
time of 1 h, in [kW/m2]. Measurements were recorded for 292
days and filled in with the ‘‘Explorador Solar ’’2 mesoscale model
to complete a whole year.

• Demand: 365 simulated days at a sampling time of 1 h, in [kW].
A detailed description is provided in Section 4.1.

1 Explorador Eólico https://eolico.minenergia.cl/inicio
2 Explorador Solar https://solar.minenergia.cl/inicio
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The data set was divided into 60% for training, 20% for testing,
and 20% for validation. During the identification procedure of the
models based on fuzzy systems and neural networks, the relevant
inputs (regressors) must be defined, and structure optimization of the
models must be performed. For fuzzy systems, structure optimization
corresponds to defining the number of rules, and for neural networks,
it corresponds to defining the number of hidden layer units. Then, the
parameters of the PI are identified (Marín et al., 2019). The results of
the identification procedure of the models are presented in Table 5.

The prediction interval coverage probability (𝑃𝐼𝐶𝑃 ), which com-
putes the number of measured values that fall within the predicted
interval; the prediction interval normalized average width (𝑃𝐼𝑁𝐴𝑊 ),
which quantifies the width of the interval; and the root mean square
error (𝑅𝑀𝑆𝐸), which evaluates the accuracy of the model, are used
as metrics for evaluating the prediction interval models. 𝑃𝐼𝐶𝑃 and
𝑃𝐼𝑁𝐴𝑊 are described mathematically as follows:

𝑃𝐼𝐶𝑃 = 1
𝑁

𝑁
∑

𝑘=1
𝛿𝑘 × 100% (17)

𝑃𝐼𝑁𝐴𝑊 = 1
𝑁 ⋅ 𝑅

𝑁
∑

𝑘=1

(

�̂�𝑈 (𝑘) − �̂�𝐿(𝑘)
)

× 100% (18)

where N is the number of observations in the data set; �̂�𝐿(𝑘) and
�̂�𝑈 (𝑘) are the lower and upper bounds of the prediction interval; 𝛿𝑘 = 1
if 𝑦(𝑘) ∈ [�̂�𝐿(𝑘), �̂�𝑈 (𝑘)]; otherwise, 𝛿𝑘 = 0; and 𝑅 is the range of the
output defined by the difference between the maximum and minimum
measured values.

Table 6 shows these metrics with the test data set tuning to a
desired 𝑃𝐼𝐶𝑃 of 50% and 90% (while the parameters of these models
were obtained from the training and validation data sets) for wind
speed, solar irradiance and load by using the linear, fuzzy and neural
network models. In this study, PI models with 50% and 90% of the
desired 𝑃𝐼𝐶𝑃 for demand and renewable generation were used for MG
planning.

Table 6 indicates that the lowest 𝑅𝑀𝑆𝐸 for the wind speed, solar
irradiance and demand models was obtained with the PI based on the
neural network. Additionally, with this neural network PI, the coverage
probability is close to the desired 𝑃𝐼𝐶𝑃 with the test data, and the
width (measured by the 𝑃𝐼𝑁𝐴𝑊 index) of the interval is sharpest with
respect to that of the other approaches: linear and fuzzy systems.

Because the objective of a PI is to obtain as narrow upper and lower
bounds as possible while guaranteeing that the interval contains the
greatest possible amount of measured data, the neural network models
generate the most high-quality intervals. Finally, Table 6 shows that
solar irradiance has low variability, measured by the 𝑃𝐼𝑁𝐴𝑊 metric.
Therefore, the expected value of solar irradiance is used in the MG
planning process directly instead of the lower or upper bound of the
PI.

Figs. 7 and 8 show the neural network PI for the wind speed and
demand for four days when using the test data set with 90% of the
desired 𝑃𝐼𝐶𝑃 .

Based on the results of the PI, the upper and lower bounds are
generated with neural network models with different desired 𝑃𝐼𝐶𝑃 .
Then, several scenarios can be generated according to the desired
coverage probability in which the PI models are tuning.

4.3. Planning based on scenarios

Given the neural network prediction interval models generated as
discussed in the previous section, the optimization process described
in 3.2 was conducted to obtain feasible alternatives for the MG, which
are compared to the deterministic design process, Baseline. The various
scenarios are considered as follows:

• Worst-case scenario: in which the wind speed equals the lower
bound of the PI and the demand equals the upper bound of the
PI, both adjusted to 90% of 𝑃𝐼𝐶𝑃 .

https://eolico.minenergia.cl/inicio
https://solar.minenergia.cl/inicio
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F

Table 5
Identification procedure results.

Fuzzy prediction interval Neural network prediction interval

Number of relevant Number Number of relevant Number of hidden
inputs (regressors) of rules inputs (regressors) layer units

Wind Speed 9 3 10 8
Solar Irradiance 10 2 11 5
Demand 13 4 12 10
Table 6
Performance indices for prediction interval models.

Desired Metrics Lineal model Fuzzy model Neural network model

PICP Wind Solar Load Wind Solar Load Wind Solar Load
Speed Irradiance Speed Irradiance Speed Irradiance

50%
RMSE (kW) 1.118 0.056 1.131 1.089 0.055 1.078 1.067 0.052 0.941
PICP (kW) 49.31 49.08 51.48 49.83 50.13 49.95 49.58 50.55 50.07
PINAW (%) 10.75 5.91 16.21 9.98 4.72 15.98 9.03 4.55 14.18

90%
RMSE (kW) 1.118 0.056 1.131 1.089 0.055 1.078 1.067 0.052 0.941
PICP (%) 89.01 89.18 92.18 89.43 88.93 88.72 89.38 88.55 88.67
PINAW (%) 19.66 10.24 30.29 19.55 7.85 25.18 18.13 7.88 23.08
t
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Fig. 7. Neural network prediction interval for wind speed with 𝑃𝐼𝐶𝑃 = 90%.

ig. 8. Neural network prediction interval for demand consumption with 𝑃𝐼𝐶𝑃 = 90%.
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A

• Bad-case scenario: in which the wind speed is estimated to be
the lower PI and the demand is estimated by the upper PI, both
adjusted to 50% of 𝑃𝐼𝐶𝑃 .

• Good-case scenario: in which the wind speed equals the upper
PI and the demand equals the lower PI, both adjusted to 50% of
𝑃𝐼𝐶𝑃 .

• Best-case scenario: in which the wind speed is estimated to be
the upper bound of the PI, and the demand is estimated by the
lower bound of the PI, both adjusted to 90% of 𝑃𝐼𝐶𝑃 .

In all scenarios, we use the expected value of solar radiation due to
he low variability of this resource, and the baseline case corresponds
o the expected values of the models.

In this regard, the community expressed the need not to depend
n the main grid supply from the electricity company, a social feasi-
ility restriction that is considered in the design. Table 7 presents the
ptimum MG design, costs, and operation performance under the five
cenarios.

The optimization process resulted in a different MG design for each
cenario. In general terms, as a more unfavorable scenario is considered
higher demand and lower wind speed), the project’s NPC is higher,
ainly due to increased operating costs associated with higher fuel

onsumption. In this case study, it is also possible to determine that,
ecause of the high cost of investment in the installation of wind
urbines, only if the real wind conditions are better than the baseline,
hould the hybrid solar-wind configuration be proposed; otherwise,
ind turbine installation should not be recommended.

A conservative criterion was considered to minimize the investment
isk, so the design in the worst-case scenario was selected. Compared to
hat of the baseline, in the worst-case, the load profile demands 11.5%
ore power from the gensets than does the baseline: this increases

he operational costs by USD$1,305/year and the fuel consumption by
5.3%. Because in this scenario a 19.9% higher demand is supplied, a
ower energy cost is obtained. Finally, yet importantly, if an investor
n the project is less risk-averse, they may consider one of the other
esigns proposed in Table 7 for a more favorable scenario, which may
llow them to make a smaller initial investment.

. Conclusions

A planning methodology that includes various scenarios in an MG
onnected to the main grid in a rural Mapuche community was pro-
osed. Four scenarios were generated by using prediction interval
odels to represent different possible wind speed and load conditions.
simulator of power consumption based on sociodemographic data
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Table 7
Microgrid design, associated costs and operation under different scenarios.

Configuration Unit Worst-case Bad-case Baseline Good-case Best-case

Wind turbine of 10 [kW] [units] 0 0 0 1 1
Photovoltaic array [kWp] 111.0 92.8 89.7 63.1 38.6
Solar inverter [kW] 40.0 30.0 30.0 20.0 18.0
Battery bank [kWh] 162.4 144.3 139.8 117.3 85.7
Battery inverter [kW] 23.2 20.1 20.4 15.6 13.9
Genset [kW] 20.0 20.0 20.0 20.0 20.0

Costs Unit Worst-case Bad-case Baseline Good-case Best-case

Net Present Cost [USD] $476,212 $433,575 $417,734 $391,240 $336,241
Initial investment [USD] $333,914 $296,491 $290,407 $280,069 $229,262
Operating costs [USD/year] $12,406 $11,952 $11,101 $9,780 $9,327
Energy costs [USD/kWh] $0.491 $0.507 $0.516 $0,523 $0.514

Operation Unit Worst-case Bad-case Baseline Good-case Best-case

Fraction of NCRE [%] 84.1 85.7 86.4 91,9 91.4
Fuel consumption [lts/year] 3,768 3,672 3,269 1,822 1,671
Production of the gensets [kWh/year] 10,977 9,627 9,560 5,286 4,887
w
𝑡

P

was presented by using clustering methods (SOM and fuzzy c-means)
and MCs for obtaining load profiles from the dwellings, with sufficient
variability to simulate data. The interval models enabled characteriza-
tion of the best-, good-, bad- and worst-case scenarios of consumption
and renewable resources within a defined coverage probability.

Based on the generated scenarios and considering technical-
economic criteria, the appropriate MG topologies for implementation
were suggested to facilitate decision-making. An appropriate topology
for an MG was obtained by using the worst-case scenario of low wind
speed and increased demand. Compared to those of the other scenarios,
the MG topology was similar, but the investment risk was minimized
under the worst-case scenario.

The use of computational intelligence methods (MCs, SOMs and PIs)
constitutes a novelty for this type of microgrid planning methodology.
MG planning requires data that are not usually available, especially in
small, underserved communities. In these situations, the use of clus-
tering methods is useful to group dwellings and obtain measurements
from representative selected locations. Grouping dwellings together
generates savings in the planning stage, as fewer measurement instru-
ments are needed. Furthermore, grouping reduces the time necessary
to locate all the occupants and recover the data from the home-based
measurement instruments. Finally, the prediction interval introduced
here opens a path to obtain more realistic scenarios necessary to
begin MG planning for small-scale projects, ensuring feasibility even
in worst-case scenarios.

The proposed methodology presented in this work can be improved
in some ways. The measurement of data for longer periods may allow
the determination of seasonal modifications in consumption or habits,
in which case it is possible to adjust new MCs or to use other strategies
that account for these changes in demand. In the same direction, the
dwelling clusters from another sociodemographically similar commu-
nity can be associated with the cluster data obtained in this work to
validate or adjust the load profiles generated from this study with
respect to actual consumption measurements from the other similar
community. Regarding the generation of scenarios, a stochastic ap-
proach can be compared against the robust approach of this work for
microgrid sizing, simulation and selection to evaluate the performance
and obtained final costs from the evaluation given a certain risk level.

CRediT authorship contribution statement

Raúl Morales: Conceptualization, Methodology, Software, Writ-
ing – original draft. Luis G. Marín: Methodology, Software, Writing
– review & editing. Tomislav Roje: Methodology, Software, Writ-
ing – review & editing. Víctor Caquilpan: Methodology, Software,
Writing – review & editing. Doris Sáez: Methodology, Visualization,
Writing – review & editing. Alfredo Nuñez: Visualization, Resources,
11

Supervision.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This research was funded by Instituto Sistemas Compejos de Inge-
niería (ISCI), Chile under grant ANID PIA/PUENTE AFB220003, the
Solar Energy Research Center SERC-Chile under grant ANID/FONDAP/
1522A0006, and the ANID/FONDECYT 1220507 grant.

Appendix A. Determination of the Markov chain number of states

One important task is to prove that the transition probabilities are
constant within each set 𝑆𝑞 , that is, that �̂�𝑖𝑗 = �̂�𝑖𝑗 (𝑡) ∀𝑡. Thus, the 𝜒2

test is performed for the MC transition matrix (Anderson & Goodman,
1957), where the value of 𝜒2 is calculated as:

𝜒2
𝑞 =

∑

𝑡∈𝑆𝑞

𝑚
∑

𝑖=1

𝑚
∑

𝑗=1
𝑛𝑖(𝑡) ⋅

(

�̂�𝑖𝑗 (𝑡) − �̂�𝑖𝑗
)2

�̂�𝑖𝑗
∀𝑞 = 1… 𝑠 (A.1)

where 𝑡 belongs to set 𝑆𝑞 .
The null (𝐻0) and alternative (𝐻𝑎) hypotheses are proposed, for

which the 𝑝-value obtained from the 𝜒2
𝑞 test is compared against the

threshold defined by the 𝛼-value of 0.01:

𝐻0 ∶ 𝑝𝑖𝑗 (𝑡) = 𝑝𝑖𝑗 , ∀𝑡 𝑡 = 1… 𝑇 (A.2a)

𝐻𝑎 ∶ 𝑝𝑖𝑗 (𝑡) ≠ 𝑝𝑖𝑗 , ∃𝑡 𝑡 = 1… 𝑇 (A.2b)

The degrees of freedom of the 𝜒2 distribution to obtain the 𝑝-value
are 𝐷𝑂𝐹 = 𝑚(𝑚−1)(𝑇−1). If 𝑝-value ≥ 𝛼-value, there is evidence against
the null hypothesis 𝐻0; otherwise, 𝐻0 is accepted as valid.

Based on the method of Navarrete (2014), the determination of the
MC number of states is performed by using the Markov inequality,
which states that:

P {𝑋 ≥ 𝑡} ≤ P {𝜙(𝑋) ≥ 𝜙(𝑡)} ≤ E {𝜙(𝑋)}
𝜙(𝑡)

, (A.3)

ith 𝜙 a monotonically increasing and nonnegative function. Let 𝜙(𝑡) =
; we have:

{𝑋 ≥ 𝑡} ≤ E{𝑋}
. (A.4)
𝑡
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Chebyshev’s inequality, the product of taking 𝜙(𝑡) = 𝑡2 and 𝑋 =
|𝑍 −E(𝑍)|, expresses that Boucheron et al. (2003):

P {|𝑋 −E{𝑋}| ≥ 𝑡} ≤ 𝑉 𝑎𝑟{𝑋}
𝑡2

(A.5)

Let 𝑆𝑛 = 1
𝑛
∑𝑛

𝑖=1 𝑋𝑖, where 𝑋1,… , 𝑋𝑛 are independent random
ariables corresponding to a Bernoulli experiment that has a value of
with probability 𝑝𝑖𝑗 if the transition is from state 𝑖 to 𝑗, and 0 with

robability (1 − 𝑝𝑖𝑗 ) otherwise. Then:

{

|𝑆𝑛 −E{𝑆𝑛}| ≥ 𝑡
}

= P

{

|

|

|

|

|

1
𝑛

𝑛
∑

𝑖=1

(

𝑋𝑖 −E{𝑋𝑖}
)

|

|

|

|

|

≥ 𝑡

}

(A.6a)

≤
𝑉 𝑎𝑟{𝑆𝑛}

𝑡2
=

∑𝑛
𝑖=1 𝑉 𝑎𝑟{𝑋𝑖}

𝑛2𝑡2
= 𝑛𝜎2

𝑛2𝑡2
= 𝜎2

𝑛𝑡2
(A.6b)

Furthermore, since E{𝑋𝑖} = 𝑝𝑖𝑗 :

E{𝑆𝑛} = 1
𝑛

𝑛
∑

𝑖=1
E{𝑋𝑖} = 1

𝑛
𝑛 ⋅ �̂�𝑖𝑗 = �̂�𝑖𝑗 (A.7)

By substituting this result into inequality (A.4), we obtain:

{

|𝑝𝑖𝑗 − �̂�𝑖𝑗 | ≥ 𝑡
}

≤ 𝜎2

𝑛𝑡2
=

𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 )

𝑛𝑡2
(A.8)

The upper bound is obtained with 𝑝𝑖𝑗 ⋅ (1 − 𝑝𝑖𝑗 ) = 0.25, which occurs
when 𝑝𝑖𝑗 = 0.5. Thus, we finally obtain:

P
{

|𝑝𝑖𝑗 − �̂�𝑖𝑗 | ≥ 𝑡
}

≤ 1
4𝑛𝑡2

(A.9)

On the other hand, Hoeffding’s inequality (Boucheron et al., 2003)
or 𝑋𝑖 independent variables, in which 𝑋𝑖 belongs to the interval [𝑎𝑖, 𝑏𝑖]
ith probability 1, establishes that:

{

|𝑆𝑛 −E{𝑆𝑛}| ≥ 𝑡
}

≤ 2 exp

⎛

⎜

⎜

⎜

⎝

− 2𝑡2
∑𝑛

𝑖=1

(

(𝑏𝑖−𝑎𝑖)
𝑛

)2

⎞

⎟

⎟

⎟

⎠

(A.10)

Given that 𝑋𝑖 ∈ [0, 1] with probability 1, then 𝑎𝑖 = 0 𝑦 𝑏𝑖 = 1, and
replacing (A.7), we finally obtain:

P
{

|𝑝𝑖𝑗 − �̂�𝑖𝑗 | ≥ 𝑡
}

≤ 2𝑒−2𝑛𝑡
2 (A.11)

By using (A.9) and (A.11) as the upper bounds for the probability
∗ = P

{

|𝑝𝑖𝑗 − �̂�𝑖𝑗 | ≥ 𝑡
}

together with 𝑝∗ ≤ 1, we verify that 𝑐(𝑛𝑖) ≤ 𝑝∗,
here 𝑛𝑖 is the amount of data that belongs to state I and 𝑐(𝑛𝑖) is defined
s:

(𝑛𝑖) = min
{

1, 2𝑒−2𝑛𝑖𝑡
2
, 1
4𝑛𝑖𝑡2

}

(A.12)
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