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a b s t r a c t 

Prediction interval modelling has been proposed in the literature to characterize uncertain phenomena 

and provide useful information from a decision-making point of view. In most of the reported studies, as- 

sumptions about the data distribution are made and/or the models are trained at one step ahead, which 

can decrease the quality of the interval in terms of the information about the uncertainty modelled for a 

higher prediction horizon. In this paper, a new prediction interval modelling methodology based on fuzzy 

numbers is proposed to solve the abovementioned drawbacks. Fuzzy and neural network prediction in- 

terval models are developed based on this proposed methodology by minimizing a novel criterion that 

includes the coverage probability and normalized average width. The fuzzy number concept is considered 

because the affine combination of fuzzy numbers generates, by definition, prediction intervals that can 

handle uncertainty without requiring assumptions about the data distribution. The developed models are 

compared with a covariance-based prediction interval method, and high-quality intervals are obtained, as 

determined by the narrower interval width of the proposed method. Additionally, the proposed predic- 

tion intervals are tested by forecasting up to two days ahead of the load of the Huatacondo microgrid in 

the north of Chile and the consumption of the residential dwellings in the town of Loughborough, UK. 

The results show that the proposed models are suitable alternatives to electrical consumption forecast- 

ing because they obtain the minimum interval widths that characterize the uncertainty of this type of 

stochastic process. Furthermore, the information provided by the obtained prediction interval could be 

used to develop robust energy management systems that, for example, consider the worst-case scenario. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Nonlinear models can provide excellent insight into complex

real-world processes and systems. Such models represent the re-

lationships among variables and are useful in planning and opera-

tional stages as well as in the analysis of measured data ( Rencher &

Schaalje, 2008 ). In general, the aim of predictive models is to ob-

tain a reliable representation of the target system ( Ghanbari, Ha-

davandi, & Abbasian-Naghneh, 2010 ). In recent decades, several

methodologies have been proposed to solve nonlinear model iden-

tification problems that use a finite number of measured data and

consider an optimality criterion ( Škrjanc, 2011 ). Many studies have

examined methods for improving the accuracy of these approaches
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o obtain higher precision in expected value prediction ( Khodayar,

ang, & Manthouri, 2018; Kroll & Schulte, 2014 ). 

Neural networks and fuzzy systems are efficient for nonlin-

ar modelling because they have a high fitting accuracy for non-

inear systems ( Veltman, Marín, Sáez, Gutierrez, & Nuñez, 2015;

u, Zhang, Zhu, & He, 2017 ). Although computational intelligence

ethods exhibit adequate performance in estimation and predic-

ion, uncertainty is not typically quantified by these modelling ap-

roaches, and only expected value is obtained. However, informa-

ion on the dispersion of the output of the model provides more

nformation about the phenomena modelled with uncertainty and

ore useful information from a decision-making point of view

han the models with only expected value ( Kabir, Khosravi, Hosen,

 Nahavandi, 2018; Shrivastava, Lohia, & Panigrahi, 2016 ). 

Confidence intervals and prediction intervals have been pro-

osed to model the uncertainties of a system. Confidence intervals

re used to capture uncertainties in the unknown parameters of

 model. Confidence intervals are usually associated with param-

ters rather than with observations. Prediction intervals are used
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o capture uncertainties in random variables yet to be observed

nd provide a probability that the random variable will be within a

iven interval ( Dybowski & Roberts, 2001; Heskes, 1997; Ramezani,

ashiri, & Atkinson, 2011; Rencher & Schaalje, 2008 ). Prediction in-

ervals consider more sources of uncertainty than do confidence

ntervals; these additional sources of uncertainty include model er-

or and noise variance. The predicted outputs are intervals that

epresent (with a given coverage probability) the most likely region

efined by the upper and lower bounds of the interval to which

he output of the uncertain phenomena will belong. 

In this paper, prediction interval models are used to represent

oth nonlinear behaviour and uncertainty derived from noncon-

entional energy sources and electrical demand. The uncertain-

ies associated with wind and photovoltaic power are due to the

tochastic intermittency of the primary input (wind speed and so-

ar radiation), and the uncertainty of the demand profiles in energy

ommunities (microgrids) is due to minor load variations, which

an generate large changes in the total profile ( Parhizi, Lotfi, Kho-

aei, & Bahramirad, 2015 ). Moreover, for control of microgrids, the

ncertainty associated with intermittent power sources and load is

ypically handled using a robust model predictive control (Robust

PC) in the formulation of the energy management system (EMS)

 Sáez, Ávila, Olivares, Cañizares, & Marín, 2015 ). The EMS is a con-

rol strategy that allows coordination of the energy resources to

upply the demand, guaranteeing an economic and reliable opera-

ion. Robust EMS has become popular because it can be applied us-

ng uncertainty sets rather than probabilistic models, reducing the

ifficulties related to PDF identification ( Lara, Olivares, & Cañizares,

018 ). 

In the work of Valencia, Collado, Sáez, and Marín (2016) , a

ind-based energy source was modelled by a fuzzy prediction in-

erval based on the method reported in the work of Škrjanc, Blaži ̌c,

nd Agamennoni (2005) , and a Robust EMS was achieved using

he convex sum of the lower (worst case) and upper (best case)

ounds of the available wind energy. In a similar way, in the works

f Valencia et al. (2016) and Xiang, Liu, and Liu (2016) , prediction

nterval models of the solar power, wind power, and electrical de-

and of a microgrid were generated to formulate a scenario-based

obust EMS. In Valencia et al. (2016) , the combination of all the

ower and upper bounds of the prediction intervals allowed the

arious scenarios for Robust EMS to be defined, and the solution

as obtained using a second-order cone optimization problem. In

iang et al. (2016) , scenarios were generated via Taguchi’s orthog-

nal array testing method using the prediction intervals of the

ncertain variables modelled, and the optimization problem was

olved using a search strategy based on an orthogonal array. The

esults of the previous studies showed that a more secure and re-

iable operation is achieved with Robust EMS than with EMS with-

ut uncertainty. However, the performance of a Robust EMS de-

ends on the quality of the prediction interval models over the fu-

ure time horizon; therefore, improved prediction interval model

esigns are required ( Marín, Valencia, & Sáez, 2016 ; Parhizi et al.,

015 ; Sáez et al., 2015 ). 

Several approaches have been proposed that use neural net-

orks and fuzzy systems to generate prediction interval models

see Section 2 ). In many cases, these approaches carry high compu-

ational costs and/or require making assumptions about the data.

dditionally, in several of the reported approaches, the prediction

nterval models are tuned only one step ahead, which could de-

rease the quality of the interval in terms of the information about

he uncertainty modelled for a higher prediction horizon. 

This paper presents a new methodology for developing predic-

ion interval models using a novel criterion that includes the cover-

ge probability and the normalized average width of the interval as

etrics for training models at future steps. Thus, the prediction in-

erval models aim to achieve the desired coverage probability with
he sharpest interval possible. Note that the narrower the width of

he prediction intervals, the more accurate the information about

he uncertainty phenomena. However, a width that is too narrow

ight compromise the coverage probability. 

The main contribution of this work is a new modelling method-

logy for constructing prediction intervals based on fuzzy numbers

nd its extension to fuzzy and neural network prediction interval

odels. The fuzzy number concept is used because the affine com-

ination of interval fuzzy numbers generates, by definition, predic-

ion interval models that can handle uncertainty without requiring

ssumptions to be made about the data and the noise distribution.

he proposed prediction interval is developed in two stages. First,

odel identification is performed to tune the parameters neces-

ary for obtaining the expected value. Then, the spreads of the pa-

ameters of the prediction interval are found for the future step.

he proposed methodology can be used to describe a large family

f uncertain nonlinear functions, such as the electrical demand in

mall communities. 

The remainder of this paper is organized as follows:

ection 2 presents a literature review of prediction inter-

al modelling. Section 3 introduces the problem statement.

ection 4 presents prediction interval models based on interval

uzzy numbers and the extension to fuzzy and neural network

odels. Section 5 describes the proposed method for developing

rediction interval models. Section 6 presents the results of a

enchmark test and two case studies involving load forecasting for

esidential dwellings in the town of Loughborough, UK, and for

he isolated microgrid installed at Huatacondo in northern Chile.

he last section provides the main conclusions and the focus of

uture work. 

. Literature review for prediction interval modelling 

In the specialized literature, several methods based on neural

etworks and fuzzy systems have been proposed to obtain predic-

ion intervals. In the work of Khosravi, Nahavandi, Creighton, and

tiya (2011a) , traditional methods based on neural networks were

nalysed, including the delta, Bayesian, mean-variance estimation,

nd bootstrap methods. These approaches are computationally ex-

ensive and/or make assumptions about noise. For instance, the

elta method assumes that noise is homogeneous, and the calcu-

ation of Jacobian matrices is required. The Bayesian method as-

umes that the parameters are a random set of variables with a

istribution defined a priori, and it requires the computation of

he Hessian matrix. The mean-variance estimation method consid-

rs that model errors are normally distributed around the true tar-

et; therefore, the method requires the known mean and variances.

his approach assumes that the corresponding neural network ac-

urately estimates the true targets, which is not always true, lead-

ng to a low coverage probability. The bootstrap method assumes

hat a high-precision estimate of the true targets will be produced

y a group of neural networks. This method is the most computa-

ionally demanding in the development stage because several neu-

al networks are necessary to estimate variance. However, after the

odels are trained offline, online computations are simple and do

ot require the evaluation of complex matrices or derivatives. 

In the works of Škrjanc (2011) and Škrjanc et al. (2005) , two

rediction interval methods based on type-1 fuzzy systems were

roposed. In Škrjanc (2011) , the upper and lower bounds that de-

ne the interval are constructed based on the error covariance of

ach rule of the fuzzy model. However, in this approach, regionally

ependent noise with a normal distribution, with zero mean value

nd variance, is an a priori assumption. In Škrjanc et al. (2005) ,

n optimization procedure was used to find the lower- and upper-

ound parameters of a fuzzy model. This method for prediction in-

erval construction is considered a parametric method. The interval
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bounds are obtained as the result, and the optimization problem

does not impose a desired value for coverage probability or inter-

val width. In the work of Sáez et al. (2015) , one-day-ahead fuzzy

prediction interval models were developed, supported by the co-

variance method derived in Škrjanc (2011) . This prediction inter-

val model was validated using renewable generation (photovoltaic

and wind) and demand data from an installed microgrid in Huat-

acondo, Chile. Khosravi, Nahavandi, and Creighton (2011) used the

delta method to develop an adaptive neuro-fuzzy (ANFIS) predic-

tion interval model. The parameters of the ANFIS prediction inter-

val were found by minimizing a nonlinear cost function that in-

cludes the coverage probability and sharpness of the interval. A

simulated annealing algorithm was used as a solution method for

the optimization problem. 

Khosravi, Nahavandi, Creighton, and Atiya (2011b) proposed the

lower upper bound estimation (LUBE) method for building neural

network prediction intervals as an alternative to solving the prob-

lem regarding the assumptions about the data and/or the intensive

computational burden. Several studies have used the LUBE method

to develop prediction interval models of distributed energy re-

sources and electric consumption. For instance, Khosravi and Naha-

vandi (2013) and Khosravi, Nahavandi, and Creighton (2013) devel-

oped prediction intervals for forecasting wind farm power genera-

tion. In a similar way, Quan, Srinivasan, and Khosravi (2014) used

both electrical load and wind power generation data to construct

prediction interval models, and Wang, and Jia (2015) used pho-

tovoltaic power data to construct prediction intervals based on a

radial basis function (RBF) neural network. However, in these ap-

proaches, neural network training is based on a cost function that

includes the combinational coverage width-based criterion (CWC).

The problem with this criterion, as established in Shrivastava,

Khosravi, and Panigrahi (2015), Wan, Xu, Østergaard, Dong, and

Wong (2014), Pinson and Tastu (2014) , and Khosravi, and Naha-

vandi (2014b) , occurs when an extremely narrow interval width

is obtained: the entire term (CWC) becomes zero irrespective of

the prediction interval coverage probability; therefore, the cover-

age probability can be very low. Additionally, in Khosravi, and Na-

havandi (2014a) an interval type-2 fuzzy system was proposed for

construction of prediction intervals. The left and right points of

the type-reduced set were defined as the lower and upper bounds

of the prediction interval. However, the parameters of the system

were obtained using the same CWC criteria. 

Other approaches regarding the prediction intervals of renew-

able resources, the price of energy, and the electricity demand

have been reported ( Hu, Hu, Yue, Zhang, & Hu, 2017; Li et al., 2018;

Shrivastava et al., 2015, 2016; Voyant et al., 2018 ). In the works of

Shrivastava et al. (2016) and Shrivastava et al. (2015) , methodolo-

gies were proposed based on the support vector machine (SVM)

to generate the prediction intervals for wind speed and electric-

ity costs. In Shrivastava et al. (2016) , a multi-objective differential

evolution algorithm was used to tune model parameters such that

multiple opposing objectives were achieved to generate Pareto-

optimal solutions. In Shrivastava et al. (2015) , using particle swarm

optimization (PSO), the optimal model parameters were obtained

by minimizing the interval width while a desired coverage prob-

ability was achieved. In both studies, SVMs were used to gener-

ate the upper and lower bounds of the prediction interval. How-

ever, the upper and lower values for the training process were un-

known; they were artificially generated by modifying the training

values within a given percentage. Hu et al.(2017) used the ker-

nel extreme learning machine (KELM) method to develop the pre-

diction interval for wind power using data from two wind farms.

The artificial bee colony algorithm was used to find the param-

eters necessary for the KELM models. The optimization was per-

formed using a cost function that included the coverage proba-

bility, the sharpness of the interval and the average deviation of
he data from the prediction interval as metrics. In the work of

oyant et al. (2018) , prediction interval models of the global hor-

zontal irradiation using regression tree methods were presented.

everal prediction models were tested, including classic, pruned,

agged and boosted regression tree and classic and smart persis-

ence models. Several predictors based on subsets of the training

ata were used to build the prediction interval. Then, a cumulative

istribution function (CDF) was constructed based on predicted

alues from each regression tree model developed. In the work of

i et al. (2018) , an improved bootstrap method was proposed for

onstructing prediction intervals using extreme gradient boosting

XGB) as the base model. The approach was compared with tra-

itional bootstrap, LUBE and SVR-2D using solar power data. The

roposed method in this study achieved the best performance in

erms of the quality of the prediction interval. Although the predic-

ion interval performed well in previous studies, they considered

nly short prediction horizons (a few hours ahead), and for some

pplications, for instance, for EMSs in microgrid operations based

n receding horizon control, a higher prediction horizon could be

ecessary. 

Several types of Takagi–Sugeno fuzzy systems that model the

ncertainty in the antecedent, in the consequent or in both parts

f the fuzzy rules have been discussed in the literature. Type-2

uzzy sets are used to model the uncertainty in the antecedent,

nd fuzzy numbers are used to model the uncertainty in the

onsequents ( Khosravi, Nahavandi, Creighton, & Srinivasan, 2012;

endel, 2017 ). Most reported studies have demonstrated that

hese kinds of systems are excellent tools for handling uncer-

ainty and have a degree of accuracy superior to traditional type-

 fuzzy systems. For instance, in the work of Jafarzadeh, Fadali,

nd Yaman (2013) type-1 and interval type-2 fuzzy systems were

roposed for the prediction of solar power. Type-2 systems with

ype-2 antecedents and crisp consequents provided the more pre-

ise output. Khosravi et al. (2012) compared neural networks, tra-

itional type-1 fuzzy systems and interval type-2 fuzzy systems

or electrical demand prediction. The results show that the in-

erval type-2 fuzzy model showed improved the prediction accu-

acy compared to the other approaches due to its additional de-

rees of freedom. In a similar way, in the work of Khosravi, and

ahavandi (2014c) , an interval type-2 fuzzy system was proposed

or one-day-ahead load prediction. An optimal type reducer based

n a neural network was proposed to improve prediction perfor-

ance without increasing computational burden compared to tra-

itional type reduction. In Begian, Melek, and Mendel (2008) a

ovel inference engine for a type-2 fuzzy system was presented.

his approach uses a closed form for inference instead of the type-

eduction process. The results showed that the proposed inference

echanism outperforms the type-1 fuzzy systems. 

Additionally, several studies have demonstrated that the use of

omplex fuzzy sets and logic in intelligent systems can improve the

rediction of future observations in a time series ( Yazdanbakhsh &

ick, 2018 ). In the work of Chen, Aghakhani, Man, and Dick (2011) ,

n adaptive neuro-complex fuzzy inferential system (ANCFIS) was

roposed. This system was applied to time-series prediction for

ynthetic and real-world datasets. The results showed that com-

lex fuzzy sets are a useful tool in intelligent systems design. AN-

FIS achieved good performance using a maximum of three rules

or all experiments; in contrast, the best ANFIS network used 128

ules for the synthetic dataset. Yazdanbakhsh, and Dick (2017) pro-

osed an extension of the ANCFIS to the multivariable time-series

rediction. The proposed approach was compared with the re-

ults showed in the work of Li, and Chiang (2013) for the NAS-

AQ dataset. The results showed that ANCFIS has superior per-

ormance regarding the complex neuro-fuzzy autoregressive in-

egrated moving average (CNFS-ARIMA) approach. The work of

azdanbaksh, Krahn, and Dick (2013) compared three approaches:



L.G. Marín, N. Cruz and D. Sáez et al. / Expert Systems With Applications 119 (2019) 128–141 131 

A  

l  

a  

d

 

i  

p  

u  

t  

o  

t  

v  

p  

u  

t  

m  

t  

f  

p  

m  

fi  

t  

d  

p  

t  

r  

t  

m  

r  

M  

a  

i  

v  

i  

f  

a  

m  

t

 

e  

d  

t  

Z  

&  

p  

(  

t  

s  

t  

w  

t  

(  

Z  

f  

t  

t  

G  

s  

u  

c  

b  

M  

m  

a  

f  

c

3

 

n  

t  

i  

n  

v

 

c

y  

w  

m  

o  

d  

f  

t  

T  

1  

w  

T  

a  

2  

t  

o

G

w  

t  

E  

v  

f  

p  

t

y  

 

t  

i  

t  

i  

2

P

 

(  

K  

t  

t  

b  

P  

w  

m

 

c  

t  

r  

m  

d  

m  

i  

i  

p

NFIS, radial basis function network (RBFN) and complex fuzzy

ogic (ANCFIS) for photovoltaic power prediction. ANCFIS was more

ccurate than the other approaches regarding one-step-ahead pre-

iction. 

However, the previous studies have focused only on improv-

ng the precision of the expected value rather than obtaining the

rediction interval. Because these kinds of the systems can nat-

rally provide a prediction interval, with the type-1 fuzzy set at

he consequent, some studies have included the dispersion of the

utput in the design of the system to obtain the prediction in-

erval in an active way. For instance, Veltman et al. (2015) de-

eloped a fuzzy prediction interval model for an electric load ap-

lication. The fuzzy interval was obtained by including only the

ncertainty in the parameters of the consequences. All parame-

ers (premises and consequences) of the fuzzy prediction interval

odel were found using an improved teaching-learning-based op-

imization algorithm (ITLBO) to minimize a multi-objective cost

unction. Marín et al. (2016) characterized uncertainty in wind

ower and electric load using type-2 fuzzy prediction interval

odels. As Mendel (2017) mentioned, this work is arguably the

rst paper to use the type-reduced set in an active way (rather

han using it only as a means to obtain the expected value)

uring parameter identification. In a manner similar to that re-

orted in the work of Veltman et al. (2015) , all parameters of

he type-2 fuzzy system were tuned using some optimality crite-

ia of the prediction interval, such as the coverage probability, in-

erval width and prediction error. Consequently, many parameters

ust be tuned in these approaches using an optimization algo-

ithm. The prediction interval models in Veltman et al. (2015) and

arín et al. (2016) were validated for predictions up to two days

head using data on the energy resources of an isolated microgrid

nstalled in Chile. Although the desired coverage probability in pre-

ious studies is fixed during the training process of the prediction

nterval, this coverage probability could decrease as the number of

uture steps increases because these models are trained one step

head. Therefore, prediction intervals that generate the most infor-

ation in terms of the relationship between the width of the in-

erval and the coverage probability over future steps are required. 

Deep learning has achieved state-of-the-art results in sev-

ral areas, such as computer vision. However, only recently have

eep learning-based algorithms become a popular solution for

ime-series forecasting ( Chen, Zeng, Zhou, Du, & Lu, 2018; Qiu,

hang, Ren, Suganthan, & Amaratunga, 2014; Rodrigues, Markou,

 Pereira, 2018 ). Several deep learning methods exist for this pur-

ose. The most popular is the long short-term memory network

LSTM), which is a form of recurrent neural network (RNN) with

he ability to model complex patterns in time series due to its

pecialized cell architecture. LSTM networks are not affected by

he exploding gradient problem that is common in regular RNN

hen trained to predict values at future steps. These characteris-

ics have made LSTM networks popular for time-series forecasting

 Bao, Yue, & Rao, 2017; Bui, Le, & Cha, 2018; Liu, Wang, Yang, &

hang, 2017 ). Most reported works in deep learning for time-series

orecasting aim to predict the expected value rather than a predic-

ion interval. Some development has also been made for the es-

imation of uncertainty using deep learning models. In Gal, and

hahramani (2016) , a Monte Carlo dropout approach for repre-

enting model uncertainty was presented. The same approach was

sed in Zhu, and Laptev (2017) , where a LSTM encoder-decoder ar-

hitecture was used to predict the daily completed trips processed

y the Uber platform using uncertainty estimation based on the

onte Carlo dropout of hidden units. However, these approaches

ake several assumptions on the process distribution. Addition-

lly, although LSTM networks are currently used for time-series

orecasting, sometimes the improvement of the prediction does not

ompensate for the higher complexity of the LSTM network. 
. Problem statement 

In this paper, prediction interval modelling based on fuzzy

umbers provides a systematic framework for representing uncer-

ainty and nonlinear dynamics, which makes it useful for forecast-

ng the uncertainty associated with stochastic variables, such as re-

ewable energy-based generation variables. Next, the general inter-

al modelling problem is detailed. 

The result of mapping an input vector Z ( k ) onto a nonlinear real

ontinuous function g can be written as follows: 

 (k ) = g(Z(k ) , w ) + ε(k ) k = 1 , . . . , N (1)

here Z ( k ) = { z 1 ( k ), z 2 ( k ),…, z p ( k )} represents the input vector of all

easurements at time k, y ( k ) is the output obtained from the set

f measured data at time k, w is the true parameter set, and ran-

om variable ε( k ) is noise. The aim of the model is to find a real

unction g ∈ G that belongs to the model class G, such that g is

he best representation of the system (Shrivastava et al., 2016) .

he condition for selecting the model is ‖ y (k ) − ˆ y (k ) ‖≤ ε 0 k =
 , . . . , N, where ˆ y (k ) = g(Z(k ) , ˆ w ) is the model output at time k ,

ˆ  are the estimated parameters and ε0 is the desired error model.

he error may be due to unknown or unobserved variables that

ffect the model output ˆ y (k ) ( Heskes, 1997; Rencher & Schaalje,

008 ). When the nonlinear real function g is an uncertain func-

ion, it can be assumed that it is a member of the following family

f functions ( Škrjanc, 2011; Škrjanc et al., 2005 ): 

 = 

{
g : S → R 

1 | g ( Z ( k ) ) = g nom 

( Z ( k ) ) + �g ( Z ( k ) ) 
}

(2) 

here g nom 

represents the nominal function and �g models

he uncertainty and satisfies sup Z∈ S | �g (Z) | ≤ c, c ∈ R . According to

q. (2) , the function g ∈ G can be used to predict a new obser-

ation, and its uncertainty based on observed data. This type of

unction ( g ∈ G) is called a prediction interval model. The goal of

rediction interval modelling is to find the lower function ˆ y L and

he upper function ˆ y U that satisfy: 

ˆ 
 L (k ) ≤ g(Z(k ) , w ) ≤ ˆ y U (k ) ∀ Z(k ) ∈ S (3)

In this respect, a function g from the class G can be found in

he band defined by the upper and lower functions. The prediction

ntervals are developed with a certain coverage probability (1 −α)%

hat future observations of the uncertain phenomena belong to the

nterval defined by the lower ˆ y L and upper ˆ y U bounds ( Ak et al.,

013 ): 

 

{
ˆ y L (k ) ≤ y (k ) ≤ ˆ y U (k ) 

}
≥ (1 − α)% (4) 

As in the works of Veltman et al. (2015), Marín et al.

2016), Shrivastava et al. (2016), Khosravi et al. (2011a,2011b ), and

hosravi, Nahavandi, and Creighton (2010) , in this methodology,

he prediction interval coverage probability (PICP) and the predic-

ion interval normalized average width (PINAW) are the metrics to

e incorporated in the identification process of prediction intervals.

ICP is used to quantify the number of measured values that fall

ithin the interval defined by the model, and PINAW is used to

easure the width of the interval. 

In this paper, new prediction interval models based on the con-

ept of fuzzy numbers are derived such that the width defined by

he upper ˆ y U (k ) and lower ˆ y L (k ) values of the interval is as nar-

ow as possible while the interval contains a certain percentage of

easured data y ( k ). This condition implies that, to generate pre-

iction intervals, the average width measured by PINAW must be

inimized while considering a certain desired coverage probabil-

ty measured by PICP. In the next section, the proposed prediction

nterval models based on fuzzy and neural network modelling are

resented. 
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4. Prediction interval models based on fuzzy numbers 

In this section, a new approach to developing prediction inter-

vals based on fuzzy and neural network models is derived. In gen-

eral, the models consider a set of p inputs ( z 1 ( k ) ∈ Z 1 ,…, z p ( k ) ∈
Z p ) that represent the input measurement data at time step k . 

When an affine linear model is used, the model output ˆ y (k ) at

time k is defined as follows: 

ˆ y (k ) = θo + θ1 z 1 (k ) + · · · + θp z p (k ) , (5)

where θ i ( i = 0, 1, …, p ) are the regression coefficients. In this pa-

per, to include uncertainty, the coefficients θ i are defined as inter-

val fuzzy numbers ( Lee, 2005; Mendel, 2017 ). Therefore, the pa-

rameters are expressed as a fuzzy set that defines a fuzzy interval

for representing the value of θ i . 

Thus, the parameters θ i (interval fuzzy numbers) are character-

ized by a mean ( m ) and spread ( s ). The uncertainty distribution

regarding the expected value is characterized using various spread

values, i.e., θi = [ m i − s i , m i + s̄ i ] . The lower bound ( ̂  y L ) and upper

bound ( ̂  y U ) that define the prediction interval are defined based

on the theorem of the affine combination of type-1 interval fuzzy

numbers (see Karnik and Mendel (2001) and Mendel (2017) for de-

tails on this theorem): 

ˆ y L (k ) = 

p ∑ 

i =1 

m i z i (k ) + m 0 −
p ∑ 

i =1 

| z i (k ) | s i (6)

ˆ y U (k ) = 

p ∑ 

i =1 

m i z i (k ) + m 0 + 

p ∑ 

i =1 

| z i (k ) | ̄s i (7)

Based on Eqs. (6) and (7) , the expected value is characterized by

the mean ( m i ). The last term in both equations is associated with

the prediction interval, and it is characterized by the parameters

( ̄s i , s i ) . 

In this interval modelling approach, the parameters associated

with spread ( ̄s i , s i ) are obtained to assure the desired coverage

probability (1 −α)% with the smallest interval width at the defined

future prediction horizons. The proposed method for identifying

these parameters (spreads) is described in Section 5 . The models

thus provide the values of the upper ( ̂  y U ) and lower ( ̂  y L ) bounds

given a coverage probability and the expected value ˆ y (k ) . 

The proposed method is used to characterize uncertainty. Un-

certainty corresponds to the fitting error between the prediction

ˆ y (k ) and the actual output y ( k ); thus, uncertainty is defined by

the interval [ ̂  y L , ̂  y U ] to which the predicted value could belong. In

the next section, both fuzzy and neural network prediction interval

models based on fuzzy numbers are presented. 

4.1. Fuzzy prediction interval modelling 

Mathematically, a fuzzy system is defined by a set of p inputs

( z 1 ( k ) ∈ Z 1 ,…, z p ( k ) ∈ Z p ), a set of rules, and an output ˆ y j (k ) related

to each rule at time k . The rules of the Takagi–Sugeno models are

expressed as follows: 

R 

j : i f z 1 (k ) is F j 
1 

and · · · and z p (k ) is F j 
p then (8)

ˆ y j (k ) = θ j 
o + θ j 

1 
z 1 (k ) + · · · + θ j 

p z p (k ) 

j = 1,…, M, where M is the number of rules. Let F j ( Z(k ) ) =∏ p 
i =1 

μ
F 

j 
i 

( z i (k ) ) be the activation degree of each rule. Then, the

normalized activation degree β j ( Z ( k )) is defined as follows: 

β j (Z(k )) = 

F j (Z(k )) ∑ M 

j=1 F 
j (Z(k )) 

(9)

In this paper, singleton fuzzification, Gaussian membership

functions (F 
j 

i 
) , and the t-norm product are used to provide the
utput of the fuzzy system: 

ˆ 
 (k ) = 

M ∑ 

j=1 

β j (Z(k )) ̂  y j (k ) (10)

Considering the proposed interval modelling framework, in the

uzzy prediction interval models, the consequence parameters (θ j 
i 
)

f each rule ( Eq. (8) ) can be considered as interval fuzzy numbers

ith their corresponding means (m 

j 
i 
) and spreads ( ̄s j 

i 
, s 

j 
i 
) . Thus,

he local interval output for each rule ( j ) is calculated as follows:

ˆ 
 

j 
L 
(k ) = 

p ∑ 

i =1 

m 

j 
i 
z i (k ) + m 

j 
0 

−
p ∑ 

i =1 

| z i (k ) | s j i (11)

ˆ 
 

j 
U 
(k ) = 

p ∑ 

i =1 

m 

j 
i 
z i (k ) + m 

j 
0 

+ 

p ∑ 

i =1 

| z i (k ) | ̄s j i (12)

Finally, the lower ˆ y L (k ) and upper ˆ y U (k ) bounds are calculated

onsidering the activation degrees Eq. (9) ) and the local outputs of

ach rule ( Eqs. (11) and ( (12) ) as follows: 

ˆ 
 L (k ) = 

M ∑ 

j=1 

β j (Z(k )) ̂  y j 
L 
(k ) (13)

ˆ 
 U (k ) = 

M ∑ 

j=1 

β j (Z(k )) ̂  y j 
U 
(k ) (14)

In this paper, a fuzzy clustering method is considered for defin-

ng the rule numbers and the parameters (centre and standard de-

iation) of the Gaussian membership functions (F 
j 

i 
) . The means

(m 

j 
i 
) of the consequences are estimated by the minimum least-

quares optimization method ( Babuška, 1998 ). The method for tun-

ng the spreads ( ̄s j 
i 
, s 

j 
i 
) is explained in Section 5 . 

The lower and upper bounds of the fuzzy prediction model for

orecasting the output of future steps are defined as follows: 

ˆ 
 L (k + h ) = f f uzzy (Z(k + h ) , β j (Z(k + h )) , m 

j 
i 
, s j 

i 
(k + h )) 

∀ h = 1 , . . . , N p (15)

ˆ 
 U (k + h ) = f f uzzy (Z(k + h ) , β j (Z(k + h )) , m 

j 
i 
, ̄s j 

i 
(k + h )) 

∀ h = 1 , . . . , N p (16)

here j = 1,…, M is the rule number, i = 1,…, p is the input number,

nd N p is the prediction horizon. Note that the parameters s 
j 
i 
(k +

 ) and s̄ 
j 
i 
(k + h ) are the spreads tuned 

˜ h steps ahead, where ˜ h ∈
 1 , . . . , N p } , using experimental data with certain coverage prob-

bility at the future steps. After the tuning process is completed

nd the prediction interval is obtained, these parameters are held

onstant through horizon prediction, i.e., s 
j 
i 
(k + h ) = s 

j 
i 
(k + ̃

 h ) and

¯ 
j 
i 
(k + h ) = s̄ 

j 
i 
(k + ̃

 h ) for h = 1,…, N p . More details about the tuning

ethod are provided in Section 5 . 

.2. Neural network prediction interval modelling 

Mathematically, a neural network system is defined by a set of

 inputs ( z 1 ( k ) ∈ Z 1 ,…, z p ( k ) ∈ Z p ), a set of weights ( w ) and biases

 b ) per layer, and an activation function per layer. If the neural net-

ork uses a hyperbolic tangent activation function for the hidden

ayer and a linear activation function for the output layer, the out-

ut of the neural network at time k is defined as follows: 

ˆ 
 l (k ) = 

L ∑ 

j=1 

w 

0 
j,l 

( 

tanh 

( 

p ∑ 

i =1 

w 

h 
j,i z i (k ) + b h j 

) ) 

+ b 0 l (17)
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Fig. 1. Methodology for developing prediction intervals. 
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 = 1,…, L , where L is the number of hidden layer units and l is the

umber of output units; in this paper, l = 1. The hidden weights,

idden bias, output weights and output bias are w 

h 
j,i 

, b h 
j 
, w 

0 
j,l 

and

 

0 
l 

respectively. The neural network in Eq. (17) can be written as

ollows: 

ˆ 
 (k ) = 

L ∑ 

j=1 

w 

0 
j 

˜ Z j (k ) + b 0 (18) 

here: 

˜ 
 j (k ) = tanh 

( 

p ∑ 

i =1 

w 

h 
j,i z i (k ) + b h j 

) 

(19) 

In this paper, Bayesian regularization is used to train the neural

etwork. Bayesian regularization consists of a paradigm designed

o minimize overfitting of neural networks. The method provides a

ayesian criterion for terminating training, thus generating better

esults for the test dataset ( Gençay & Qi, 2001 ). 

In this approach, the neural network prediction interval is de-

eloped such that the output weights (w 

0 
j 
) are considered inter-

al fuzzy numbers with their means ( m j ) and spreads ( s j , ̄s j ) . The

ower and upper bounds of the prediction interval can be calcu-

ated as follows: 

ˆ 
 L (k ) = 

L ∑ 

j=1 

m j ̃
 Z j (k ) + b 0 −

L ∑ 

j=1 

∣∣ ˜ Z j (k ) 
∣∣s j (20) 

ˆ 
 U (k ) = 

L ∑ 

j=1 

m j ̃
 Z j (k ) + b 0 + 

L ∑ 

j=1 

∣∣ ˜ Z j (k ) 
∣∣s̄ j (21) 

The neural network can be defined as a neural network whose

utputs are the upper and lower bounds and the target prediction.

s fuzzy prediction interval models, neural network prediction in-

erval models are used to forecast the output of future steps as

ollows: 

ˆ 
 L (k + h ) = f NN ( ̃  Z j (k + h ) , m j , s j (k + h )) ∀ h = 1 , . . . , N p (22)

ˆ 
 U (k + h ) = f NN ( ̃  Z j (k + h ) , m j , ̄s j (k + h )) ∀ h = 1 , . . . , N p 

(23) 

here j = 1,…, L is the number of hidden layer units and N p is the

rediction horizon. Note that the parameters s j (k + h ) and s̄ j (k +
 ) are the spreads tuned 

˜ h steps ahead, where ˜ h ∈ { 1 , . . . , N p } , us-

ng experimental data with a certain coverage probability at the

uture steps. After the tuning process is completed and the pre-

iction interval is obtained, these parameters are held constant

hrough horizon prediction. 

Next, the method for identifying the parameters of the predic-

ion interval based on fuzzy systems and neural networks is ex-

lained. 

. Proposed method for developing prediction intervals based 

n fuzzy systems and neural networks 

The identification procedure for deriving the prediction interval

odels is shown in Fig. 1 . The first part of this procedure corre-

ponds to the identification method of the fuzzy and neural net-

ork models for obtaining the expected value, and the second part

s the method for prediction interval parameter (spreads) identifi-

ation. 

Regarding model identification ( Fig. 1 ), the first step involves

ata collection for training, validation and testing; sufficient infor-

ation is collected to represent the various operational points of

he process to be modelled. The training dataset is used to obtain
he model parameters. The validation dataset is not directly used

n the training process; however, it allows the model generaliza-

ion capacity given by the model behaviour to be evaluated under

 new dataset. Finally, the test dataset is used to evaluate the per-

ormance of the obtained model. 

In this procedure, a structural optimization is made. The struc-

ural optimization of fuzzy and neural network models consists of

roposing several structures. Specifically, several fuzzy models are

btained when the number of clusters (rules) is modified, and sev-

ral neural network models are obtained by modifying the hidden

euron number. Then, relevant input variables are selected via sen-

itivity analysis, and a structural optimization is made. Finally, the

arameters necessary for obtaining the expected value are calcu-

ated using the relevant input variables, the optimal structure and

he training dataset. As proposed in Sáez, and Zuñiga (2004) , the

est structure is defined when the validation error is either in-

reased or stabilized in comparison with the training error when

he structure of the model increases in complexity. 

For the fuzzy models, the Gustafson–Kessel clustering algorithm

s used to obtain the premise parameters, and the consequence pa-

ameters are estimated by the minimum least-squares optimiza-

ion method. Bayesian regularization is used to obtain the param-

ters of the neural network models. Finally, the model is evalu-

ted using a test dataset to verify model performance. Then, if the

erformance of the model is not suitable, the model identification

rocedure in previous steps must be reviewed; otherwise, this pro-

edure is completed ( Sáez & Zuñiga, 2004 ). 

After the model identification procedure, the parameters asso-

iated with providing the expected value are obtained. In fuzzy

odels, the standard deviation and centre of the Gaussian func-

ions (F 
j 

i 
) of the fuzzy model are found, where p ( i = 0,1,…, p ) are

he relevant inputs identified and M ( j = 1,…, M ) is the rules num-

er. These parameters are necessary for obtaining the normalized

ctivation degree ( β j ( Z ( k ))) of the premises. The identified con-

equence parameters (θ j 
i 
) (see Eq. (8) ) are assigned to the mean

alues (m 

j 
i 

= θ j 
i 
) required in Eqs. (11) and (12) , and the expected

alue ( Eq. (10) ) can be obtained. 

Regarding neural network models, hidden weights (w 

h 
j,i 
) and

idden biases (b h 
j 
) are found. With these parameters, the term

˜ 
 j (k ) in Eq. (19) is calculated, where p ( i = 1,…, p ) are the relevant

nputs identified and L ( j = 1,…, L ) is the number of hidden layer
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units. Additionally, the output weights (w 

0 
j 
) and output bias ( b 0 )

are identified. Finally, the output weights are used to obtain the

expected value, where m j = w 

0 
j 

(used in Eqs. (20) and (21) ). After

the model identification stage, the spreads of the parameters for

developing the prediction interval at future steps must be identi-

fied (see Fig. 1 ). This method is described in the following section.

5.1. Parameters identification for prediction intervals 

This identification method stage obtains the parameters

(spreads) of the prediction interval models such that the upper

and lower values of the interval are as narrow as possible and the

interval contains a certain percentage of measured data. The pre-

diction interval models derived in this paper can include endoge-

nous y ( k ) and exogenous variables u ( k ), where Z ( k ) = [ y ( k − 1),…,

y ( k − q 1 ), u ( k − 1), u ( k − 2),…, u ( k − q 2 )] 
T is the vector of regressors

associated with the output and input variables. Then, the predic-

tion interval is a function of the real and/or prediction data, de-

pending on the number of future steps ( Sáez et al., 2015 ). In this

paper, the spreads for developing the prediction interval are tuned

according to the required steps ahead. Then, based on the formu-

lation described in the previous sections for developing the pre-

diction interval models and the metrics for evaluating the perfor-

mance of the prediction interval, the spread identification proce-

dure consists of the solution to the following optimization problem

(24) : 

min 

s (k + ̃ h ) , ̄s (k + ̃ h ) 
P INAW 

st. P ICP = 1 − α (24)

where ˜ h ∈ { 1 , . . . , N p } is the number of steps ahead and (1 −α)%

is the desired coverage probability. The prediction interval normal-

ized average width (PINAW) and the prediction interval coverage

probability (PICP) for N p steps ahead are defined as follows: 

P ICP = 

1 

N 

N ∑ 

k =1 

δk + h × 100% (25)

P INAW = 

1 

N · R 

N ∑ 

k =1 

(
ˆ y U (k + h ) − ˆ y L (k + h ) 

)
× 100% 

∀ h = 1 , . . . , N p (26)

where δk + h = 1 if y (k + h ) ∈ [ ̂  y L (k + h ) , ̂  y U (k + h )] ; otherwise,

δk + h = 0. The parameters ( s (k + ̃

 h ) , ̄s (k + ̃

 h )) are the decision vari-

ables in the optimization problem, and the dimensionalities of

these parameters depend on the model selected. For fuzzy models,

2 pM parameters that correspond to the spreads ( s j 
i 
(k + ̃

 h ) , ̄s j 
i 
(k +

˜ h )) and 2 L parameters for the neural network model that corre-

sponds to the spreads ( s j (k + ̃

 h ) , ̄s j (k + ̃

 h )) should be identified.

Then, the parameters ( s (k + ̃

 h ) , ̄s (k + ̃

 h )) ( Eq. (24) ) must be com-

puted such that i ) PICP is greater than or equal to the desired cov-

erage probability (1 −α)% and ii ) PINAW is as small as possible at

future steps. The equality constraint PICP = (1 −α)% in Eq. (24) is a

hard constraint and is therefore included in the optimization prob-

lem as a barrier function to relax this constraint. Therefore, the

solution of the minimization problem (24) is computed following

the procedure for the unconstrained minimization problem: 

min 

s (k + ̃ h ) , ̄s (k + ̃ h ) 
J = η1 P INAW + exp 

−η2 (P ICP −(1 −α)) (27)

In (27) , η1 is a weighting factor and η2 is a penalty factor. These

parameters are chosen such that, if PICP is less than (1 −α)%, the

term exp 

−η2 (P ICP −(1 −α)) is the dominant term in the cost function;

otherwise, PINAW is dominant. Finally, the solution to the nonlin-

ear optimization problem (27) is computed using particle swarm

optimization (PSO), as outlined in the next section. 
.2. Solution method 

To solve the nonlinear optimization problem in Eq. (27) , tradi-

ional algorithms, such as gradient descent methods, are not ade-

uate. These methods entail a risk of falling into a local optimum

hen solving non-convex optimization problems. Therefore, other

ptimization methods are needed (Quan et al., 2014) . In this paper,

SO is used to solve the problem because it generally outperforms

ther algorithms in terms of success rate and solution quality, as

eported in the work of Elbeltagi, Hegazy, and Grierson (2005) . In

SO, the generated solutions are called particles, and each particle

as a position vector with an associated velocity vector ( Tran, Wu

 Nguyen, 2013 ). The first step in the algorithm consists of the

nitialization of particle positions x i,j and velocities v i,j for the j-th

imension of the i-th particle. In this paper, the particle positions

re all the spread parameters ( s (k + ̃

 h ) , ̄s (k + ̃

 h )) required to de-

elop the prediction interval model, as explained in Section 4 . 

The velocity v i,j and position x i,j in the j-th dimension of every

-th particle are updated according to the following relations: 

 i, j (t + 1) = W v i, j (t) + c 1 rand()(P bes t i, j (t) − x i, j (t)) 

+ c 2 rand()(gbes t j (t) − x i, j (t)) 

x i, j (t + 1) = x i, j (t) + v i, j (t + 1) (28)

 = 1, 2,…, NP where NP is the number of particles, and j = 1,2,…, N 0

s the total number of parameters to be identified, which depends

n the type of model used (fuzzy or neural). W is an inertia fac-

or, Pbest is the best previous solution of the particle, and gbest is

he best solution of the swarm up to the current step. The terms

 1 and c 2 are called the cognitive and social acceleration constants,

nd rand () is a random number between 0 and 1. The training ter-

ination criterion is set when a minimum error or a defined max-

mum number of iterations is achieved. Once the training process

erminates, the gbest value is chosen as the spread parameter to

enerate the prediction interval model. 

PINAW and PICP are used as metrics for the evaluation of the

uality of the interval. Additionally, the root mean square error

RMSE) and the mean absolute error (MAE) are included as per-

ormance indices to evaluate the accuracy of the prediction model

ssociated with the expected value. All indices are evaluated for

everal prediction horizons with the test dataset. In this paper,

he prediction interval models based on fuzzy systems and neural

etworks are used to represent the nonlinear behaviour and un-

ertainty derived from electricity demand; however, the proposed

ethodology can be used to describe a large family of uncertainty

onlinear functions. 

. Results 

A comparative analysis between the proposed prediction inter-

al models based on interval fuzzy numbers (PI-IFN) and covari-

nce prediction interval models is presented following the defini-

ion presented in Rencher and Schaalje (2008) and Škrjanc (2011) .

he prediction interval based on the covariance establishes the in-

erval based on the error between the observed data y ( k ) and the

odel output ˆ y (k ) . This method is based on the assumption that

he noise is normally distributed with a zero mean value and vari-

nce σ 2 that is expressed as e = N (0, σ 2 ) ( Škrjanc, 2011 ). 

As indicated in Eq. (18) , the neural network model is a

inear model of the parameters. Therefore, the prediction in-

erval based on the covariance method can be developed us-

ng Eqs. (29) and (30) , following the definition presented in

encher and Schaalje (2008) : 

ˆ 
 U = 

˜ Z ∗T W 

0 + b 0 + t ασe 

(
1 + 

˜ Z ∗T 
(

˜ Z T ˜ Z 
)−1 

˜ Z ∗
)1 / 2 

(29)
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Fig. 2. Modified Chen series for 400 training data . 
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B  
ˆ 
 L = 

˜ Z ∗T W 

0 + b 0 − t ασe 

(
1 + 

˜ Z ∗T 
(

˜ Z T ˜ Z 
)−1 

˜ Z ∗
)1 / 2 

(30) 

here σ e is the variance of the error, t α is the parameter related to

he interval width, ˜ Z ∗ is the new datum used to predict the future

bservation and 

˜ Z is the matrix that considers all data used in the

raining process in which the output weights and output bias were

etermined. 

Finally, the fuzzy prediction interval model based on covariance

roposed in Škrjanc (2011) is used to obtain the upper and lower

ounds of the local linear model as follows: 

ˆ 
 

j 
U 

= ψ 

∗T 
j θ j + t ασ j 

(
1 + ψ 

∗T 
j 

(
ψ j ψ 

T 
j 

)−1 
ψ 

∗
j 

)1 / 2 

j = 1 , . . . , M (31)

ˆ 
 

j 
L 
= ψ 

∗T 
j θ j − t ασ j 

(
1 + ψ 

∗T 
j ( ψ j ψ 

T 
j ) 

−1 
ψ 

∗
j 

)1 / 2 

j = 1 , . . . , M (32)

 = 1,…, M, where M is the total number of rules composing the

uzzy system, σ j is the local variance of the error, and ψ 

T 
j 

=
j (Z )[1 Z T ] is the matrix that considers all the values used in the

raining process. 

For all the models (fuzzy and neural), t α is tuned using exper-

mental data to achieve the desired coverage probability (1 −α)%,

s explained in Sáez et al. (2015) . In the next section, the results

f a benchmark and the load forecast with the proposed prediction

nterval models are presented. 

.1. Benchmark 

In this paper, the original Chen series in Chen, Billings, and

rant (1990) is modified and used to evaluate the prediction in-

erval models: 

 (k ) = (0 . 8 − 0 . 5 exp (−y 2 (k − 1))) y (k − 1) 

− (0 . 3 + 0 . 9 exp (−y 2 (k − 1))) y (k − 2) + u (k − 1) 

+0 . 2 u (k − 2) + 0 . 1 u (k − 1) u (k − 2) + e (k ) (33) 

here the system noise e ( k ) = 0.5exp ( − y 2 ( k − 1)) γ ( k ) depends on

he previous state of the output model and γ ( k ) is white noise. The

ystem input u ( k ) is band-limited Gaussian white noise. The sys-

em is simulated, and 10,0 0 0 data points are generated. The data

re divided into training, validation and testing sets accounting for

5%, 25% and 20% of the total dataset, respectively. Fig. 2 shows

he input, output and noise of the modified Chen series simulation
or 400 training data. As shown in Fig. 2 , the noise level is high

hen the output y ( k ) is close to zero. 

The regressors u ( k − 1), u ( k − 2), y ( k − 1) and y ( k − 2) are de-

ned as the inputs for deriving the prediction interval models. Re-

arding the structure of the fuzzy model, five rules are defined,

hereas eight hidden layer units are defined for the neural net-

ork model. With these structures defined, the parameters associ-

ted with providing the expected value are obtained as explained

n Section 5 . The PSO algorithm is used to identify the spread

arameters for generating the prediction interval at future steps.

he desired coverage probability (1 −α) = 90%, the weighting fac-

or η1 = 250 and the penalty factor η2 = 150 in Eq. (27) are defined.

 particle size of 50 and the parameters c 1 = 2.5 and c 2 = 1.5 are

sed. Finally, W runs from 0.9 to 0.3 during offline optimization.

he number of iterations for PSO is set to 50 0 0, the optimizations

re executed several times, and the best solution is selected. The

ost function value ( J ) in Eq. (27) and the developed metrics are

eported in Table 1 for the test dataset using various numbers of

teps ahead. 

As shown in Table 1 , the fuzzy and neural network models pro-

ide cost function values ( J ) lower than those of the linear model,

hich is consistent with the nonlinear benchmark structure. These

esults are expected because of the ability of the fuzzy and neural

etwork models to better fit the dynamics and nonlinearities of

he systems, which are more notable for longer future-step predic-

ions. Additionally, it can be observed that the cost function of the

roposed method ( Eq. (27) ) is lower than that of the covariance

ethod for all models (i.e., linear, fuzzy and neural network). The

MSE and MAE values are equal in the proposed and covariance

ethods because the identification method is the same. However,

he prediction error increases for a larger horizon prediction be-

ause the accumulative error of the model is larger when the steps

f the horizon increase, as shown in Table 1 . 

Furthermore, it can be observed that the PICP term is close to

0% because the interval models are trained to maintain PICP near

he desired value for various steps ahead. In terms of prediction in-

ervals, the proposed method (PI-IFN) provides narrower intervals

or all step-ahead forecasts. While the covariance method main-

ains a constant width for the interval (see Figs. 3 (a), 4 (a) and

 (a)), the proposed method achieves a narrower interval in states

ith little noise and an interval with a width similar to that of the

ovariance method in states with high noise. 

Importantly, the information level delivered by a prediction in-

erval is directly related to its width ( Marín et al., 2016 ; Xu et al.,

017 ); thus, the proposed method yields a better information level

egarding the covariance method (smaller widths). Wider intervals

ould produce a higher PICP , but these intervals provide less useful

nformation about the uncertainty of the modelled phenomena. In

his respect, the neural network models exhibit sharper prediction

ntervals than the linear and fuzzy models. 

Figs. 3 –5 show sixteen-step-ahead forecasts of the linear, fuzzy

nd neural network prediction interval models. The figures show

hat nearly all the data are included in the interval; only the out-

iers of the time series are left outside the region constructed by

he prediction interval. Additionally, the intervals produced by the

roposed method (PI-IFN) are narrower than those obtained by the

ethod used for comparison, as shown in the figures. 

.2. Application for load forecasting 

In this section, two case studies involving the implementation

f the prediction interval models are presented to address the un-

ertainty associated with a load. The first case is from the isolated

icrogrid in the village of Huatacondo in Chile, and the second is

rom 20 residential dwellings in the town of Loughborough, UK.

oth fuzzy and neural network prediction interval models based
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Table 1 

Performance indices. 

Prediction horizon Performance indices Linear models Fuzzy models Neural models 

Covariance PI-IFN Covariance PI-IFN Covariance PI-IFN 

One step ahead J 52.23 32.62 26.26 23.60 20.93 18.20 

RMSE 0.4312 0.4312 0.3517 0.3517 0.2372 0.2372 

MAE 0.2883 0.2883 0.2253 0.2253 0.1241 0.1241 

PINAW (%) 20.89 12.40 10.09 9.37 7.90 6.85 

PICP (%) 98.15 89.68 89.98 91.18 89.89 89.95 

Four steps ahead J 57.71 47.47 40.27 35.56 36.58 24.36 

RMSE 0.6124 0.6124 0.5266 0.5266 0.4076 0.4076 

MAE 0.5010 0.5010 0.3765 0.3765 0.2446 0.2446 

PINAW (%) 23.05 17.35 15.14 13.73 14.18 9.18 

PICP (%) 91.62 89.06 89.41 89.86 89.92 89.77 

Eight steps ahead J 57.98 49.32 43.39 39.48 39.94 32.62 

RMSE 0.6761 0.6761 0.5621 0.5621 0.5105 0.5105 

MAE 0.4647 0.4647 0.4015 0.4015 0.3127 0.3127 

PINAW (%) 23.19 18.16 17.08 15.29 15.13 11.72 

PICP (%) 93.26 89.09 90.25 89.85 89.50 89.20 

Sixteen steps ahead J 58.16 50.75 45.21 41.40 45.93 36.15 

RMSE 0.6814 0.6814 0.5839 0.5839 0.5937 0.5937 

MAE 0.4717 0.4717 0.4167 0.4167 0.3685 0.3685 

PINAW (%) 23.26 18.97 17.85 15.98 18.20 14.10 

PICP (%) 93.19 89.20 90.36 89.75 90.57 90.07 

Fig. 3. Sixteen-step-ahead linear prediction interval model: (a) covariance and (b) proposed methods . 
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on the concept of interval fuzzy numbers (PI-IFN) were used to

develop the load forecasting models supported by the results ob-

tained with the benchmark. 

6.2.1. Huatacondo microgrid 

In this section, the proposed prediction interval model based

on the concept of interval fuzzy numbers (PI-IFN) is identified us-

ing data from an isolated microgrid in the village of Huatacondo in

the Atacama Desert, Chile. The dataset used corresponds to a pe-

riod of 147 days, spanning November 1st of 2012 to March 27th

of 2013, with a sampling time of 15 min, and the peak power load

is 27.54 kW. The training dataset corresponds to the period span-

ning November 1st of 2012 to January 19th of 2013, the validation

dataset corresponds to the period spanning January 20th to Febru-

ary 26th of 2013, and the test dataset corresponds to the period

spanning February 27th to March 27th of 2013. 
Based on the obtained data and using the identification pro-

cedure described in Section 5 , an optimal structure consisting of
hree rules and nine regressors is obtained for the fuzzy model: 

ˆ p L (k ) = f f uzzy ( p L ( k − 1 ) , p L ( k − 2 ) , p L ( k − 3 ) , p L ( k − 4 ) , p L ( k − 92 ) , . . . 

p L ( k − 93 ) , p L ( k − 95 ) , p L ( k − 96 ) , p L ( k − 100 ) ) (34)

Similarly, eight neurons in the hidden layer and ten regressors
re obtained for the neural network model as an optimal struc-
ure: 

ˆ p L (k ) = f NN ( p L (k − 1) , p L (k − 2) , p L (k − 3) , p L (k − 4) , p L (k − 92) , . . . 

p L (k − 93) , p L (k − 95) , p L (k − 96) , p L (k − 97) , p L (k − 100)) (35)

Note that exogenous variables are not included in the models

sed to represent the behaviour of the load. During the model

dentification stage, a prediction horizon of N p = 1 is considered,

s explained in Section 5 . However, the spread parameters for gen-

rating the prediction interval models are identified using PSO by

onsidering various steps ahead with a desired coverage probabil-

ty of (1 −α)% = 90%. The parameters used for the PSO algorithm
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Fig. 4. Sixteen-step-ahead fuzzy prediction interval model: (a) covariance and (b) proposed methods. 

Fig. 5. Sixteen-step-ahead neural network prediction interval model: (a) covariance and (b) proposed methods. 
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re identical to those in the benchmark problem. To minimizing

he random initialization of the parameters (spreads), the opti-

ization is performed several times, and the model with the low-

st cost function value is selected. 

The performance of the prediction interval models is evaluated

y considering 192-step-ahead (two-day-ahead) predictions. This

rediction horizon of the load is selected because, for instance,

alma-Behnke et al. (2013) implemented an EMS that minimizes

he operational costs of an isolated microgrid by considering a

wo-day-ahead prediction of renewable resources (wind and solar)

nd electricity demand. 

Table 2 presents RMSE and MAE for one-step-ahead (15 min),

ne-hour-ahead, one-day-ahead and two-day-ahead predictions of

lectricity demand using test data. In the neural network and fuzzy

odels, the prediction errors increase when the prediction horizon
t  
ncreases. However, the neural network model produces RMSE and

AE values lower than those of the fuzzy model. 

The prediction intervals are evaluated and compared using

INAW and PICP. Both models can maintain a coverage probabil-

ty close to 90% because the spread parameters for the prediction

ntervals are trained to remain within the bounds of the desired

overage probability for various steps ahead. The neural network

odel generates a narrower interval for all prediction steps, but it

lso yields a slightly lower PICP than that of the fuzzy model. Note

hat the J values for the neural network model (see Table 2 ) are

igher than those of the fuzzy model because a small variation in

ICP modifies the total cost function ( J ) (see Eq. (27) ). 

Fig. 6 shows the one-day-ahead prediction interval of the fuzzy

nd neural network models tuned with 90% coverage probability

sing a receding horizon strategy. In these figures, five days of the

est dataset are presented. In small communities (microgrids), the
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Table 2 

Performance indices. 

Prediction horizon Performance indices Fuzzy model Neural model 

One step ahead J 50.42 60.02 

RMSE (kW) 1.5110 1.4929 

MAE (kW) 1.0458 1.0318 

PINAW (%) 17.40 15.73 

PICP (%) 88.71 87.98 

One hour ahead J 52.58 60.57 

RMSE (kW) 1.7468 1.6966 

MAE (kW) 1.1873 1.1638 

PINAW (%) 19.94 17.91 

PICP (%) 89.33 88.16 

One day ahead J 57.49 73.48 

RMSE (kW) 1.9140 1.8936 

MAE (kW) 1.2874 1.2740 

PINAW (%) 20.31 19.48 

PICP (%) 88.73 87.86 

Two days ahead J 71.18 88.05 

RMSE (kW) 2.1780 2.1329 

MAE (kW) 1.4305 1.4232 

PINAW (%) 21.13 20.36 

PICP (%) 88.06 87.59 

Fig. 6. One-day-ahead prediction interva l: (a) fuzzy model and (b) neural network model. 
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variability of the load is due to the significant effects of each slight

change in the load on the total electricity demand. These find-

ings confirm that prediction interval modelling of the load is an

important task for microgrid operation when the prediction of fu-

ture quantities is considered for designing controllers. 

6.2.2. Residential dwellings in Loughborough 

The load data from 20 dwellings in the town of Loughbor-

ough, UK ( Richardson & Thomson, 2010 ), are used to develop fuzzy

and neural network prediction interval models using the proposed

method (PI-IFN). The available load data correspond to the year

2008; however, only summer data are used to develop the pre-

diction interval. Therefore, a period of 94 days is used, which is

divided into 52 days for training, 23 days for validation and 19

days for test data, corresponding to 55%, 25% and 20% of the total

dataset, respectively. The maximum electric load is 29.54 kW with

a sample time of 15 min. 
Eqs. (36) and (37) show the relevant regressors obtained during

the model identification process for the fuzzy and neural network
odels, respectively: 

ˆ p L (k ) = f f uzzy ( p L ( k − 1 ) , p L ( k − 2 ) , p L ( k − 3 ) , p L ( k − 5 ) , p L ( k − 6 ) , p L ( k − 8 ) , . . . 

p L ( k − 90 ) , p L ( k − 91 ) , p L ( k − 92 ) , p L ( k − 93 ) , p L ( k − 94 ) , . . . 

p L ( k − 95 ) , p L ( k − 96 ) , p L ( k − 97 ) , p L ( k − 98 ) ) (36)

ˆ p L (k ) = f NN ( p L (k − 1) , p L (k − 2) , p L (k − 3) , p L (k − 4) , p L (k − 5) , p L (k − 91) , . . . 

p L (k − 92) , p L (k − 95) , p L (k − 96) , p L (k − 97) , p L (k − 100)) (37)

Three rules and nine neurons in the hidden layer correspond to

he optimal structure for the fuzzy and neural network models, re-

pectively. Note that exogenous variables are not included in the

odels. Specifically, in this study, one-step-ahead (15 min), one-

our-ahead, one-day-ahead, and two-day-ahead prediction hori-

ons are considered. For both models (fuzzy and neural network),

he performance indices are computed based on the method de-

cribed in Section 5 for the prediction horizons considered. 

As shown in Table 3 , the fuzzy and neural models provide sim-

lar performances in terms of RMSE and MAE for the test dataset.

he maximum RMSE is 2.6054 kW for a peak load of 29.54 kW, cor-

esponding to the fuzzy model at two days ahead. The coverage
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Table 3 

Performance indices. 

Prediction horizon Performance indices Fuzzy model Neural model 

One step ahead J 93.07 92.33 

RMSE (kW) 2.0678 2.0613 

MAE (kW) 1.5225 1.5147 

PINAW (%) 36.68 36.44 

PICP (%) 89.79 89.86 

One hour ahead J 110.64 110.17 

RMSE (kW) 2.2942 2.2910 

MAE (kW) 1.7269 1.7139 

PINAW (%) 44.25 44.05 

PICP (%) 92.73 92.12 

One day ahead J 118.85 119.83 

RMSE (kW) 2.3429 2.2984 

MAE (kW) 1.8076 1.7403 

PINAW (%) 47.54 47.93 

PICP (%) 93.86 94.06 

Two days ahead J 128.23 128.05 

RMSE (kW) 2.6054 2.5532 

MAE (kW) 2.0665 1.9422 

PINAW (%) 51.29 51.22 

PICP (%) 94.63 94.22 

Fig. 7. One-day-ahead Prediction Interval: (a) fuzzy model and (b) neural network model . 
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robability (PICP) for all prediction horizons with respect to the

raining data is in accordance with the desired coverage probabil-

ty. 

These results suggest that the prediction interval is tuned ap-

ropriately to 90% of the desired PICP . However, Table 3 shows that

he PICP values for the test data are higher than the desired cov-

rage probability as the prediction horizon increases. For instance,

he PICP values are 93.86% and 94.06% at one-day-ahead for the

uzzy and neural network models, respectively. These results are

btained because of the high variability of the data used in this

tudy case, as shown in Fig. 7 . 

As explained in Section 5 , to calculate the spread parameters

f all prediction interval models, the coverage probability is fixed

n the optimization problem (see Eq. (24) ). The interval width find-

ng therefore corresponds to the minimum width at the step ahead

efined for characterizing the uncertainty of the modelled demand,

iven the desired PICP . The interval width (PINAW) increases with

he prediction horizon. 
Fig. 7 shows the one-day-ahead prediction intervals of the fuzzy

nd neural network models, with interval widths of 47.54% and

7.93%. Despite the widths of these intervals, the relationship be-

ween the coverage probability and the interval width for this

tudy case provides sufficient information about the uncertainty

odelled, and this information could be useful, for instance, for

he design of a robust energy management system. 

. Conclusions 

In this paper, a new prediction interval modelling framework

ased on the concept of interval fuzzy numbers was proposed to

epresent nonlinear dynamics and uncertainties. These models pro-

ide the upper and lower bounds of the predicted values given

 coverage probability with the minimum interval width at fu-

ure prediction horizons. This prediction interval modelling was

xtended to fuzzy systems and neural networks to describe a large

amily of uncertain nonlinear functions. In this paper, the fuzzy
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number concept was used because the affine combination of in-

terval fuzzy numbers generates, by definition, interval models that

can address the uncertainty of the modelled phenomena without

requiring assumptions to be made about the data or the noise dis-

tribution. In this methodology, the spreads of the prediction inter-

val models were tuned at future steps based on a novel criterion

that minimizes the width of the interval given a desired coverage

probability. 

Based on a benchmark problem, the proposed method was

compared with a covariance prediction interval method. The re-

sults show that the proposed prediction interval models gener-

ated a narrow interval width and retained the desired coverage

probability. In this sense, narrow width prediction intervals pro-

vide more information about the uncertainty phenomena mod-

elled. Furthermore, the proposed method was used to represent

the future load uncertainty of a microgrid installed in Chile and

residential dwellings in the town of Loughborough, UK for sev-

eral prediction horizons. The results indicated that the proposed

method for developing prediction intervals is suitable for load fore-

casting in applications of energy communities. 

Future work will focus on the development of a robust energy

management system based on the prediction interval modelling

developed in this paper. Additionally, other evaluation metrics for

the prediction interval could be included in the optimization prob-

lem, and a Pareto analysis could be included in the multi-objective

cost function to obtain the best compromise solution. 
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