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SUMMARY

In this paper, we propose a tractable scenario-based receding horizon parameterized control (RHPC)
approach for freeway networks. In this approach, a scenario-based min–max scheme is used to handle uncer-
tainties. This scheme optimizes the worst case among a limited number of scenarios that are considered. The
use of parameterized control laws allows us to reduce the computational burden of the robust control problem
based on the multi-class METANET model w.r.t. conventional model predictive control. To assess the perfor-
mance of the proposed approach, a simulation experiment is implemented, in which scenario-based RHPC
is compared with nominal RHPC, standard control ignoring uncertainties, and standard control including
uncertainties. Here, the standard control approaches refer to state feedback controllers (such as PI-ALINEA
for ramp metering). A queue override scheme is included for extra comparison. The results show that nomi-
nal RHPC approaches and standard control ignoring uncertainties may lead to high queue length constraint
violations, and including a queue override scheme in standard control may not reduce queue length con-
straint violations to a low level. Including uncertainties in standard control approaches can obviously reduce
queue length constraint violations, but the performance improvements are minor. For the given case study,
scenario-based RHPC performs best as it is capable of improving control performance without high queue
length constraint violations. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

According to different points of focus, there are various approaches for realizing traffic management.
On-line model-based control approaches are receiving more and more attention in literature recently,
because of their potential for improving control performance [1–4]. In on-line model-based control
approaches, traffic models are critical, because they are used for determining control decisions.
Macroscopic models, which are less accurate than microscopic models in general, are often used for
on-line model-based traffic control in order to reduce the computational complexity with respect to
microscopic models.

According to the level of aggregation, macroscopic traffic models can be divided into homoge-
neous models and heterogeneous models. In homogeneous models, all the vehicles are assumed to
have the same characteristics, and the differences among different types of vehicles are neglected.
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In contrast, in heterogeneous multi-class models, these differences are considered, and vehicles are
divided into different classes, such as cars, trucks, vans, and so on. The density of vehicles can be
maintained around a critical value corresponding to maximum flow with a single-class fundamen-
tal diagram for mixed traffic. However, for model predictive control (MPC), in which the objective
function depends on the dynamics of the controlled system, a more accurate model implies better
prediction of future characteristics of the controlled system; thus, the controller has better infor-
mation for determining control inputs. In general, the heterogeneous multi-class models are more
accurate than homogeneous sing-class models, without increasing the computing complexity signif-
icantly. Some researchers have investigated the advantages of multi-class models. Wong and Wong
[5] extended the Lighthill-Whitham-Richards (LWR) model to a multi-class version and found
that the multi-class LWR model can reproduce some traffic phenomena (e.g., two-capacity phe-
nomenon, hysteresis phenomenon of phase transition and platoon dispersion) that the single-class
case cannot reproduce. Schreiter et al. [6] developed a multi-class controller that rerouted the traf-
fic class specifically and showed that a multi-class controller outperformed a single-class controller.
Liu et al. [7] extended METANET to a multi-class version, in which each vehicle class is assumed
to be limited within its assigned space of the road, subjecting to its own fundamental diagram. Note,
however, that there are interactions among different classes of vehicles, that is, the space fractions of
different classes of vehicles vary with the densities of all classes of vehicles. Numerical experiments
show that the multi-class METANET can improve performance more than single-class METANET.
In addition, the calibration and analysis for this multi-class METANET has been done in [8], where it
was fitted with data generated by a microscopic simulator VISSIM (traffic flow simulation software,
PTV Planung Transport Verkehr AG, Karlsruhe, Germany) with real demands.

Various uncertainties exist in the on-line model-based control procedure for traffic networks. In
particular, demand uncertainties, model uncertainties, missing samples, sensor errors, and delays are
all significant factors in on-line model-based traffic control. In multi-class traffic models, the frac-
tions of different vehicle classes in the demands at the origins of the network are needed. Thus, the
uncertainties in the estimation of these fractions will affect the control performance. Considering
these uncertainties in the on-line model-based control design is important for improving the control
performance and for ensuring the satisfaction of constraints. In face of uncertainties in the control
procedure, robust control aims to maintain the control performance within a specified range and to
ensure the satisfaction of constraints. There are two strategies to realize robust control for nonlin-
ear systems. One method is to keep the cost function to be a strictly decreasing Lyapunov function
when the uncertainties are also included [9, 10]. The other method is to consider the uncertainties
in the control design, where both the optimality of performance and the constraint satisfaction are
considered for all possible uncertainties. The robust control problem is computationally very com-
plex, and many approaches have been developed to deal with it. The min-max approach [11, 12],
which considers the worst case among all possible uncertainties, is one of the most popular
approaches. However, the min-max approach is conservative because the worst-case scenario does
not always occur.

Some robust control approaches have been developed for traffic networks. Ukkusuri et al. [13]
proposed a robust optimal traffic signal control approach for urban networks with the future demand
assumed to be uncertain, and they developed a robust system-optimal control approach with an
embedded cell transmission model. Similarly considering the uncertainties in the origin-destination
demands, Jones et al. [14] proposed the near-Bayes near-Minimax method for robust traffic signal
control for an urban network and obtained a good compromise solution between the Bayes case and
the Minimax case. Tettamanti et al. [15] developed a min-max MPC approach for urban networks
to minimize the objective function in the worst-case scenario. Zhong et al. [16] dealt with the robust
control problem by using a min-max scheme and solved the optimal control for freeway networks
using a set of recursive coupled Riccati difference equations. Liu et al. [17] developed the scenario-
based RHPC approach for single-class METANET and found that the nominal RHPC approach
can lead to high queue length constraint violations and the scenario-based RHPC approach can
effectively reduce queue length constraint violations.
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The contributions of the current paper are as follows. We propose a tractable scenario-based
RHPC approach for freeway networks based on a multi-class traffic model. RHPC [18] is a variation
of standard MPC, which is based on dynamic model prediction and a receding horizon approach.
In MPC, the control inputs are directly optimized for the whole control horizon, and the number
of variables in the optimization problem is determined by the length of the control horizon. In
contrast, in RHPC, the control inputs are parameterized, and only the parameters of the control laws
are optimized instead of all control inputs. These parameters can be time-varying or constant, and
therefore, the number of variables in the optimization problem can be decreased with respect to
the MPC case. Several parameterized laws for freeway networks are given in this paper. Moreover,
we use a scenario-based scheme to deal with the robust control problem, considering a limited set
of scenarios for the uncertainties to obtain the worst-case scenario, which is actually optimized
in the min-max scheme. The scenario-based scheme has been discussed and analyzed in [19, 20].
The motivation for adopting this scheme is to reduce the computational complexity in comparison
with other applications of robust control for traffic networks in which the worst case among all
possible scenarios for the uncertainties is optimized. Intuitively, considering a limited number of
scenarios for the uncertainties makes the control design method tractable relative to considering all
the possible scenarios. Queue length constraints are often considered in freeway networks, and here
we include a soft penalty to limit the queue lengths. The reason for not using hard constraint is to
avoid infeasible optimization problems. In addition, we implement a case study and compare the
scenario-based RHPC with nominal RHPC for multiple scenarios, to illustrate the effectiveness of
this new approach.

This paper is organized as follows. Section 2 is about the preliminaries of this paper; this section
introduces the multi-class METANET model that is used for control design in this paper, and also it
gives the basic concepts of robust MPC. In Section 3, we propose the tractable scenario-based RHPC
approach for freeway networks, including analysis of uncertainties, the definition of the perfor-
mance index, the new RHPC laws based on the multi-class METANET model, and the development
of the scenario-based RHPC approach for freeway networks. In Section 4, we implement a case
study to assess the novel approach. Finally, conclusions and several future research topics are given
in Section 5.

2. PRELIMINARIES

2.1. Traffic flow model: multi-class METANET

Inspired by the approach in [21] for extending the LWR model [22, 23] into a multi-class version,
Liu et al. [8] developed a multi-class METANET model based on the single-class METANET model
[24]. This multi-class METANET model is chosen as the prediction model for traffic flows in this
paper. Freeway stretches are represented by links (indexed by m), and the links are divided into
several homogeneous segments (indexed by i). The segments are described by traffic flow variables
of each class (indexed by c) of vehicles: traffic outflow of vehicles qm;i;c.k/ (veh/h), segmental
density of vehicles �m;i;c.k/ (veh/km/h), and space-mean speed of vehicles vm;i;c.k/ (km/h). In
addition, nodes are used for describing changes in the geometry of the roads. In our multi-class
METANET model, each vehicle class is assumed to be limited within its assigned space of the road,
subjecting to its own fundamental diagram. This assigned space is described by the space fraction
˛m;i;c of vehicles of class c. Note, however, that in our multi-class METANET model there are
interactions among different classes of vehicles, that is, the space fractions of different classes of
vehicles vary with the densities of all classes of vehicles.

The flow, density, and speed equations for vehicles of class c are as follows:

qm;i;c.k/ D �m;i;c.k/vm;i;c.k/�m (1)

�m;i;c.k C 1/ D �m;i;c.k/C
T

Lm�m
.qm;i�1;c.k/ � qm;i;c.k// (2)
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vm;i;c.k C 1/ D vm;i;c.k/C
T

�m;c

�
Vm;c

�
�m;i;c.k/

˛m;i;c.k/

�
� vm;i;c.k/

�

C
T

Lm
vm;i;c.k/.vm;i�1;c.k/ � vm;i;c.k//

�
T �m;c

Lm�m;c

�m;iC1;c.k/ � �m;i;c.k/

�m;i;c.k/C �m;c

(3)

Vm;c .�m;i;c.k// D vfree;m;c exp

�
�1

am;c

�
�m;i;c.k/

˛m;i;c.k/�crit;m;c

�am;c�
(4)

in which T is the simulation time step length, k is the simulation time step counter corresponding
to the time instant t D kT , �m is the number of lanes in link m, Lm is the length of link m, �m;c ,
�m;c , �m;c , and am;c are class-dependent model parameters, Vm;c .�m;i;c.k// is the desired speed at
density �m;i;c.k/, vfree;m;c is the free-flow speed of vehicles of class c in link m, and �crit;m;c is the
critical density of vehicles of class c in link m.

Moreover, dynamic speed limits can be included through the desired speed equation as follows
[1]:

Vm;c .�m;i;c.k// D min

�
vfree;m;c exp

�
�1

am;c

�
�m;i;c.k/

˛m;i;c.k/�crit;m;c

�am;c�
; .1C �m;c/vcontrol;m;i .k/

�

(5)
with vcontrol;m;i the dynamic speed limit in segment i of link m and 1 C �m;c the non-compliance
factor, which is used for describing the phenomenon that some drivers may violate the dynamic
speed limits.

The queue length at origin o (mainstream origin or on-ramp) is described as

wo;c.k C 1/ D wo;c.k/C T .do;c.k/ � qo;c.k// (6)

where wo;c is the queue length of vehicles of class c at the origin o, do;c is the origin demand of
vehicles of class c, and qo;c is the origin outflow of vehicles of class c.

The outflow of origin o is modeled as

qo;c.k/ D min

�
do;c.k/C

wo;c.k/

T
; ˛m;1;c.k/Co;cro.k/;

˛m;1;c.k/Co;c

�
�max;m;c � �m;1;c.k/=˛m;1;c.k/

�max;m;c � �crit;m;c

��
(7)

where ˛m;1;c is the space fraction of vehicles of class c in the segment that the origin o is connected
to, �m;1;c is the density of vehicles of class c in that segment, �max;m;c is the maximum density of
vehicles of class c in the link m that the origin is connected to, Co;c is the theoretical maximum
capacity of origin o if there would be only vehicles of class c, and ro is the ramp metering rate for
on-ramp o.

In order to determine the space fractions of vehicles of class c, three traffic regimes are
distinguished [8]: free flow, semi-congestion, and congestion.

2.1.1. Free flow. In this case, all classes of vehicles are in the free-flow regime, which means that
the equivalent density of each vehicle class in its assigned space is no more than its critical density.
The space fraction of vehicle class c is then taken as

˛m;i;c.k/ D

�m;i;c.k/

�crit;m;cPnc
jD1

�m;i;j .k/

�crit;m;j

(8)

where nc is the number of vehicle classes.
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2.1.2. Semi-congestion. Here, some classes of vehicles are in the free-flow regime, while other
classes of vehicles are in the congested regime. The space fractions of the vehicle classes in free
flow are

˛m;i;c D
�m;i;c.k/

�crit;m;c
for c 2 Sm;i;free.k/ (9)

where Sm;i;free.k/ is the set of all vehicle classes that are in free flow in segment i of link m at time
step k. The space fractions of the congested vehicle classes are computed through the following
system of equations:

8<
:
Vm;c

�
�m;i;c.k/

˛m;i;c.k/

�
D Vm;lm;i

�
�m;i;lm;i .k/

˛m;i;lm;i .k/

�
for c 2 Sm;i;cong.k/=¹lm;iºP

c2Sm;i;cong.k/
˛m;i;c.k/ D 1 �

P
j2Sm;i;free.k/

˛m;i;j .k/
(10)

where Sm;i;cong.k/ is the set of all vehicle classes that are in congested mode in segment i of link m
at time step k, and lm;i is arbitrary element in Sm;i;cong.k/.

2.1.3. Congestion. All classes of vehicles are in the congested mode, and the desired speeds of all
classes of vehicles are equal. The space fractions can be obtained by solving the following system
of equations: 8̂̂

ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

Vm;1

�
�m;i;1.k/
˛m;i;1.k/

�
D Vm;2

�
�m;i;2.k/
˛m;i;2.k/

�
:::

Vm;nc�1

�
�m;i;nc�1.k/
˛m;i;nc�1.k/

�
D Vm;nc

�
�m;i;nc(k)

˛m;i;nc(k)

�
ncX
cD1

˛m;i;c.k/ D 1

(11)

For more details about the multi-class METANET model, we refer the interested reader to [8].

2.2. Robust control

We first give some background on robust MPC, which is the basis of deriving the scenario-based
RHPC approach. Robust MPC takes uncertainties into account for determining control inputs. This
is different from nominal MPC, in which the non-controllable inputs are assumed to be known, and
uncertainties are neglected in the control design step.

Assume that the traffic network is described as a discrete-time nonlinear system of the following
form:

x.k C 1/ D f .x.k/; u.k/;D.k/; !.k// (12)

where x represents the system variables (e.g., density and speed), u represents the control input
(e.g., ramp metering rates and dynamic speed limits), D represents the non-controllable input (e.g.,
demands), and ! represents the uncertainties.

The objective function of the MPC problem is based on the prediction Qx.k/ of the states over the
prediction period (with length Np), on the control inputs Qu.k/ over the control period (with length
Nc 6 Np), and on the non-controllable input QD.k/, which is assumed to be known or estimated via
an adequate prediction model. They are defined as follows:

Qx.k/ D
�
xT .k C 1/; : : : ; xT .k CNp/

	T
(13)

Qu.k/ D
�
uT .k/; : : : ; uT .k CNc � 1/

	T
(14)
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QD.k/ D
�
DT .k/; : : : ;DT .k CNp � 1/

	T
(15)

where control input u.k C l/ equals u.k CNc � 1/ for l D Nc; : : : ; Np�1.
For predicting the future system states, the non-controllable inputs are usually assumed to be

known nominal values in nominal MPC. Thus, the prediction states yielded by the nonlinear model
are influenced by the realization Q!.k/ of the uncertainties over the prediction period:

Q!.k/ D
�
!T .k/; : : : ; !T .k CNp � 1/

	T
(16)

In case the real values of the non-controllable inputs and the nominal values are significantly
different, the control decisions given by nominal MPC may not satisfy the control requirements.
However, the realizations of the uncertainties Q!.k/ are not known a priori, and the robust MPC prob-
lem is complex if all possible scenarios of uncertainties are considered. The robust MPC problem
based on the min-max scheme is formulated as follows [11]:

min
Qu.k/; Qx.k/

max
Q!.k/2W

J. Qx.k/; Qu.k/; QD.k/; Q!.k// (17)

subject to

x.k C l C 1/ D f .x.k C l/; u.k C l/;D.k C l/; !.k C l//; (18)

l D 0; 1; : : : ; Np � 1;

x.k/ D xk; (19)

u.k C l/ D u.k CNc � 1/; l D Nc; : : : ; Np � 1; (20)

x.k C l/ 2 X; l D 1; 2; :::; Np; (21)

u.k C l/ 2 U ; l D 0; 1; :::; Nc � 1 (22)

for all Q!.k/ 2W

where xk represents the state at time step k, W represents the set of all the possible realizations of
uncertainties over the prediction horizon, X is the set containing all the feasible states, and U is the
set containing all the feasible control inputs.

According to the receding horizon scheme, only the first element u.k/ of optimal input sequence
Qu.k/ is applied to the traffic network. After that, the prediction horizon shifts to the next control
step, and the control inputs are optimized again. For the robust problem consisting of (17)–(22),
computational complexity increases rapidly as the size of traffic network grows, making the problem
intractable in practice. As a solution, we propose a novel tractable scenario-based RHPC approach
for freeway networks.

3. TRACTABLE SCENARIO-BASED RHPC FOR FREEWAY NETWORKS

3.1. Uncertainties in freeway networks

The non-controllable inputs ( QD) in on-line model-based control for freeway networks include the
mainstream demands, on-ramp demands, boundary conditions, etc. As an example, let us here con-
sider the uncertainties in the traffic demand, including the uncertainties in the total value of demand
and the fractions of different classes of vehicles in the demand. Note, however, that other types of
uncertainties can also be dealt with the scenario-based RHPC approach.

The nominal demand can be estimated in various ways, based on the historical data and on-line
measurement data. An intuitive way is that the nominal demand is estimated as the average of histor-
ical data. Considering the difference among different weekdays and weekends; the nominal demand

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1211–1245
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Figure 1. An example of real demands and nominal demand.

can be estimated separately from Monday to Sunday. Thus, the characteristics of different weekdays
and weekends can be described more accurately. Moreover, if on-line measurements are available,
shifting and scaling the nominal demand according to these measurements can also improve the esti-
mation. In addition, another way is to build a library of possible uncertainties and their possibilities
of appearance.

The measured total mainstream demands of the Dutch A13 freeway near Rijswijk on several
Fridays in 2013 and 2014 are shown in Figure 1. The real demands are plotted with the same linetype
and these real demand profiles overlap with each other. Based on these demands, a nominal demand
is estimated as the average of these historical real demands and shown in Figure 1 with a different
linetype. This figure shows that real demands fall within a confidence band around the nominal
demand. Thus, it makes sense to model the uncertainties in the total demand as noise limited by a
certain lower bound and upper bound.

The estimations of the fractions of different classes of vehicles can be obtained in a similar way
as the estimation of the total demand profile. However, the estimations of these fractions ask for
separate measurements for different vehicle classes, which requires cameras to be installed along
freeway stretches. Because of economic reasons and practicability, installing cameras in high density
in a freeway network is not that common yet. Therefore, the uncertainties in the estimation of the
fractions of different classes of vehicles are nonnegligible in robust control for freeway networks
based on multi-class traffic models.

3.2. Performance index for freeway networks

The Total Time Spent (TTS) represents the total time that all vehicles Spend in the traffic network.
In on-line model-based control for freeway networks, the TTS is often used as performance index.
Here, we also use it as the performance index, but it is important to note that other performance
indices such as total emissions can also be included according to the aim of the traffic control. Ramp
Metering (RM) and Variable Speed Limits (VSL) are chosen as control measures, because they are
efficient in decreasing TTS and easy to realize [25, 26].

In this paper, as an example, the multi-class METANET model is used as the prediction model,
and TTS‡ can be defined as follows:

TTS.kc/ D T

.kcCNp/M�1X
jDkcM

ncX
cD1

pc

0
@ X
.m;i/2Iall

�m;i;c.j /Lm�m C
X
o2Oall

wo;c.j /

1
A (23)

‡Note that the TTS index here includes the TTS for all segments, the TTS for all origins, and the TTS for all on-ramps,
and they are treated equally, that is, their weights are equal to 1.
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in which kc is the control time step counter corresponding to the time instant t D kcTc, Tc is the
control time step length,§ nc is the number of vehicle classes, Iall is the set of the indices of all
pairs of segments and links, Oall is the set including the indices of all origins, and pc represents the
passenger car equivalents (pce) for vehicle class c:

pc D
Lc

Lcar
(24)

where Lc is the length of vehicles of class c, and Lcar is the length of the reference class car.
Without including uncertainties, the objective function can be defined as

J.kc/ D �TTS
TTS.kc/

TTSnom
C

�ramp

NcNramp

kcCNc�1X
jDkc

X
o2Oramp



rctrl
o .j / � rctrl

o .j � 1/




C
�speed

NcNVSL

kcCNc�1X
jDkc

X
.m;i/2Ispeed







vctrl
m;i .j / � v

ctrl
m;i .j � 1/

vfree;m;max






 (25)

in which TTSnom is the TTS value for some nominal control profile, rctrl
o .kc/ is the ramp metering

rate at origin o at control step kc, ro.k/ D rctrl
o .kc/ for k D Mkc C 1; : : : ; .M C 1/kc, vctrl

m;i .kc/

is the variable speed limit in segment i of link m at control step kc, vcontrol;m;i .k/ D vctrl
m;i .kc/ for

k DMkcC1; : : : ;M.kcC1/withM D Tc=T assumed to be an integer, vfree;m;max is the maximum
free-flow speed among all classes of vehicles in link m, Oramp includes all metered origins, Ispeed

includes all the segments with speed limits, �TTS, �ramp and �speed are positive weights, Nramp is the
number of metered on-ramps, and NVSL is the number of variable speed limits. In the objective
function (25), the second term and the third term are used for penalizing the variations of the control
inputs. The second and third terms would limit the freedom for fully optimizing the first term.
However, in general, the extent to which this occurs is case-dependent and cannot be determined
a priori.

Note that the three terms in (25) are all normalized, so that they have the same magnitude if
their weights are all the same (�TTS=�ramp=�speed). The first term is normalized with nominal TTS,
which is taken as the TTS for the case without control and uncertainties here. The second term
includes Nc control time steps and Nramp metered on-ramps, and ramp metering rates are within
[0, 1]. Thus, the second term is normalized by NcNramp. The third term includes Nc control time
steps and NVSL variable speed limits, which are within [0, vfree;m;max]. Hence, the third term is
normalized by NcNVSLvfree;m;max. In addition, setting low weights for the last two terms can make
the performance index TTS dominate in the objective function.

3.3. Receding horizon parameterized control laws for freeway networks

The RHPC approach for traffic networks has been developed by Zegeye et al. [18] based on a
receding horizon control scheme and parameterized control laws for single-class traffic models.
’t Hart [27] also investigated some parameterized MPC laws for freeway networks based on single-
class traffic model. In the RHPC approach, the control inputs are parameterized as a function of
traffic states, and the parameters in these control laws are optimized instead of the full input sequence
Qu.kc/. As an extension of [18, 27], here, we present new RHPC laws for freeway networks based on
multi-class models:

vctrl
m;i .kc C 1/ D	m;i;0.kc/vfree;m;max C 	m;i;1.kc/

ncX
cD1

ˇm;i;c.kc/
vm;iC1;c.kc/ � vm;i;c.kc/

vm;iC1;c.kc/C �v

C 	m;i;2.kc/

ncX
cD1

ˇm;i;c.kc/

�m;iC1;c.kc/

˛m;iC1;c.kc/
�
�m;i;c.kc/

˛m;i;c.kc/

�m;iC1;c.kc/

˛m;iC1;c.kc/
C ��

(26)

§Note that in Section 2, we assume Tc D T . Now, we consider the general case with Tc ¤ T .

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1211–1245
DOI: 10.1002/rnc



SCENARIO-BASED RHPC FOR MULTI-CLASS FREEWAY NETWORKS 1219

vctrl
m;i .kc C 1/ D 	m;i;0.kc/vfree;m;max C 	m;i;1.kc/

ncX
cD1

ˇm;i;c.kc/
Vm;c.�m;i;c.kc// � vm;i;c.kc/

Vm;c.�m;i;c.kc//C �v

C 	m;i;2.kc/

ncX
cD1

ˇm;i;c.kc/

�m;iC1;c.kc/

˛m;iC1;c.kc/
�
�m;i;c.kc/

˛m;i;c.kc/

�m;iC1;c.kc/

˛m;iC1;c.kc/
C ��

(27)

vctrl
m;i .kc C 1/ D 	m;i;0.kc/vfree;m;max

C 	m;i;1.kc/

ncX
cD1

ˇm;i;c.kc/
vm;iC1;c.kc/

�m;iC1;c.kc/

˛m;iC1;c.kc/
� vm;i;c.kc/

�m;i;c.kc/

˛m;i;c.kc/

vm;iC1;c.kc/
�m;iC1;c.kc/

˛m;iC1;c.kc/
C �v��

(28)

vctrl
m;i .kc C 1/ D v

ctrl
m;i .kc/ � 	m;i;1.kc/

ncX
cD1

ˇm;i;c.kc/.vm;i;c.kc/ � vm;i;c.kc � 1//

C 	m;i;2.kc/

ncX
cD1

ˇm;i;c.kc/.Vm;c.�m;i;c.kc// � vm;i;c.kc// (29)

rctrl
o .kc C 1/ D r

ctrl
o .kc/C 	o;1.kc/

ncX
cD1

ˇm;1;c.kc/
�crit;m;c �

�m;1;c.kc/

˛m;1;c.kc/

�crit;m;c
(30)

rctrl
o .kc C 1/ D r

ctrl
o .kc/ � 	o;1.kc/

ncX
cD1

ˇm;1;c.kc/.�m;1;c.kc/ � �m;1;c.kc � 1//

C 	o;2.kc/

ncX
cD1

ˇm;1;c.kc/.�crit;m;c � �m;1;c.kc// (31)

where ˇm;i;c.kc/ D
�m;i;c.kc/Pnc
jD1

�m;i;j .kc/
is the density fraction of vehicles of class c in segment i of link

m, the index m in (30) and (31) represents the link that is connected to the on-ramp o, the index 1
represents the first segment of that link, �v and �� are small positive values to prevent the divisors
to be 0, and 	m;i;0, 	m;i;1, 	m;i;2, 	o;1 and 	o;2 are the control parameters that are optimized in the
control process.

Remark 1
In (26)–(31), these control parameters are varying over the control horizon. Thus, the control inputs
(variable speed limits and ramp metering rates) vary with both the control parameters and the traffic
states. The following considerations about these control parameters can be made:

� The control parameters in the RHPC laws are not necessarily optimized at every control time
step (i.e., every Tc). This will introduce a new control time step (different from Tc) for updating
the control parameters for RHPC. However, for simplifying the exposition, we just assume that
these control parameters in the RHPC laws are optimized at every control time step (i.e., every
Tc) in this paper.
� These control parameters can be assumed to be constant during the prediction horizon

(ŒkcTc; .kcCNp/Tc
), which covers the control horizon (ŒkcTc; .kcCNc/Tc
). Thus, the control
inputs (variable speed limits and ramp metering rates) vary only with the traffic states. In this
case, the number of variables in the optimization problem to be solved is reduced with respect
to the case with varying control parameters.
� For a traffic network, the control parameters for different segments and on-ramps can be

grouped, for example, the parameters for the segments of the same link can be assumed to be
equal. Then the number of variables in the optimization problem to be solved is reduced with
respect to the case that the control parameters are not grouped.
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The RHPC laws (26)–(31) are constructed based on the traffic states of the current segment and
the next segment, which reflect future traffic situation for vehicles in the current segment. Inspired
by the speed equation of METANET, Law (26) consists of the free-flow speed, the relative variation
in the speed from the current segment to the next segment, and the relative variation in the equivalent
density from the current segment to the next segment at the current control step. Compared with Law
(26), the second term of Law (27) is the relative difference between the desired speed and the actual
speed in the current segment at the current control step. Law (28) includes the free-flow speed and
the relative variation in the flow from the current segment to the next segment at the current control
step. With the desired speed and actual speeds as inputs, Law (29) is inspired by the PI-ALINEA
law for ramp metering [28]. Law (30) is a generalization of the ALINEA law [29], and Law (31) is
a generalization of the PI-ALINEA law [28].

For all the RHPC laws here, the integration of different classes of vehicles is based on a convex
combination with density fractions of different vehicle classes as weights. Directly using indepen-
dent parameters for different vehicle classes could be a generalization of the way of including the
traffic states of all classes of vehicles in (26)–(31).

Note that there may be some instability in the speed equation of METANET. In MPC for nonlinear
systems according to literature [30–32], the instability in the controlled system can be addressed
through making the prediction horizon large enough or by including an end-point constraint. In
our work, we make the prediction horizon large enough. In addition, the Courant-Friedrichs-Lewy
[33] condition is often considered as the condition for the stability of traffic flow models (e.g.,
METANET). More specifically, no vehicle can cross a segment in one simulation time step [34],
that is, the simulation time step is chosen based on the principle

T < min
m2Ilink

Lm

maxcD1;:::;nc vfree;m;c
(32)

where Ilink represents the set including all links, and maxcD1;:::;nc vfree;m;c is the free-flow speed of
the fastest class of vehicles for the link m.

Remark 2
The RHPC laws (26)–(31) are independent from the traffic flow model that is used in this paper.
Even if the multi-class METANET model is replaced by some other traffic flow model, these laws
can still be adopted.

The following constraint conditions¶ are used for ensuring the control inputs stay within their
upper bounds and lower bounds:

vctrl
m;i .kc C 1/ D max.min.vctrl

m;i .kc C 1/; vmax;m/; vmin;m/ (33)

rctrl
o .kc C 1/ D max.min.rctrl

o .kc C 1/; rmax;o/; rmin;o/ (34)

in which vmax;m and vmin;m are respectively the upper bound and lower bound of the variable speed
limits in link m, and rmax;o and rmin;o are respectively the upper bound and lower bound of the ramp
metering rate at origin o.

3.4. Scenario-based receding horizon parameterized control

In order to obtain optimal control inputs in RHPC for freeway networks, traffic state variables
need to be predicted with future demands as exogenous inputs. Nominal RHPC for freeway net-
works adapts nominal demands, which may be very different from the real demands. This difference
may affect the control performance and the constraint satisfaction. Here, we propose a tractable
scenario-based RHPC approach, aiming to improve the behavior of the controlled system by

¶Note that these constraints are hard constraints for control inputs, and they are directly included in the control procedure.
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taking the uncertainties into account. The worst-case scenario among a limited number of scenarios
is optimized to realize the control objective. This scenario-based scheme is used for reducing the
computational burden. Moreover, in order to aim at the satisfaction of the queue length constraints,
we include a queue length penalty, which is a soft constraint as in [35]. The objective function of
the tractable scenario-based RHPC approach is as follows:

Jmin-max. Qx.kc/; Qu.kc/; QD.kc// D max
Q!.kc/2 Q�.kc/

8̂̂
<̂
ˆ̂̂:
J. Qx.kc/; Qu.kc/; QD.kc/; Q!.kc//

C�
X

o2Oramp

max

0
BBBB@

max
jDkcM;:::;.kcCNp/M�1

ncX
cD1

pcwo;c.j /

wmax;o
� 1; 0

1
CCCCA

9>>>>=
>>>>;

(35)

where Q�.kc/ D ¹ Q!1.kc/; : : : ; Q!H .kc/º �W represents the set of H possible scenarios that will be
considered for the scenario-based RHPC approach for control time step kc, wmax;o is the maximum
queue length (in pce) allowed at on-ramp o, and � is a positive weight to penalize queue length
constraint violation under uncertainties Q!.kc/ 2 Q�.kc/.

The scenario-based RHPC problem for freeway networks is defined as follows:

min
Qu.kc/; Qx.kc/

Jmin-max. Qx.kc/; Qu.kc/; QD.kc// (36)

subject to (18)–(22) for all Q!.kc/ 2 Q�.kc/

In the above scenario-based RHPC problem, when the maximum queue length is smaller than the
maximum permitted value, the queue length penalty equals 0; thus, the TTS is optimized. However,
if the maximum queue length is larger than the maximum permitted value, the queue length penalty
will be taken into account. Because of the high weight � for the queue length penalty, the queue
length will be in general optimized so that the maximum queue length is smaller than the maximum
permitted value. The inner max operator of the queue length penalty ensures that once the maximum
queue length in the entire prediction horizon is larger than the maximum permitted value, the queue
length penalty will be taken into account.

4. CASE STUDY

4.1. Benchmark network

The benchmark network shown in Figure 2, which has been simulated with other controllers in some
papers [1, 36], is used for the case study. This network includes one mainstream origin, one on-ramp,
one destination, and two links. Link 1 is 4 km long and divided into four segments with a length of
1 km. Link 2 is 2 km long and divided into two segments with a length of 1 km. Thus, the length of
the segments for both links is Lm D 1 km for m D 1; 2. The on-ramp connects to the first segment
of link 2. There are two lanes in the main road, and one lane in the on-ramp road. It is assumed that
the queue length at the origin is not limited, and the outflow at the destination is unrestricted. Note
that at the origin, the vehicles that cannot enter the network in one simulation step are considered to
be in the origin queue, and they are taken into account together with the mainstream demand, that is,
all demands are taken into account. In the third and fourth segments of link 1, variable speed limits
are present, and ramp metering is used at the on-ramp.

We consider two classes of vehicles in the network: class 1 represents cars, and class 2 represents
trucks. The parameters for these two classes of vehicles are as follows [1, 21, 35]: vfree;m;1 D
106 km/h, am;1 D 1:6761, �m;1 D 0:12, �crit;m;1 D 35 veh/km/lane, �max;m;1 D 175 veh/km/lane,
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Figure 2. Benchmark network.

and Cmainstream;1 D 2034 veh/h/lane for m D 1; 2; vfree;m;2 D 83 km/h, am;2 D 2:1774, �m;2 D
0:05, �crit;m;2 D 19 veh/km/lane, �max;m;2 D 75 veh/km/lane, and Cmainstream;2 D 990 veh/h/lane
for m D 1; 2.

Common parameters for cars and trucks are [1, 35]: �m;c D 18 s, �m;c D 40 veh/h/km, and
�m;c D 60 km2/h for c D 1; 2 and m D 1; 2. The passenger car equivalents are p1 D 1 and
p2 D 7=3. In order to avoid spillback to the upstream of the on-ramp, the total queue length (denoted
by wtotal

ramp) of cars and trucks at the on-ramp is limited to 150 pce.
The simulation time step is T D 10 s (according to (32), T < Lm

vfree;m;1
D 34 s). As for other

parameters, we select �TTS D 1, �ramp=�speed D 0:1, Tc D 60 s, and Np D 7. Here, we suppose
that the weights �TTS, �ramp, and �speed are defined by policymakers. The performance index TTS
dominates in the objective function, and the penalties to avoid abrupt variations in control inputs
are minor in comparison with TTS. The weight � is tested for different values: 0:01; 0:1; 1; 10; 100.
The control time step is six times larger than the simulation time step, because the control inputs
should not be changed too frequently in practice. The control parameters for RHPC laws depend on
the future predictions. Hence, the prediction horizon is not too long to avoid large prediction errors
under certainties. However, the prediction horizon cannot be too short due to the requirement for
crossing the traffic network within the prediction horizon. Thus, the length of the prediction horizon
is chosen according to the typical travel time through the network as suggested in [1]. Note that
in this case study, we assume that the parameters of the RHPC laws are constant over the entire
prediction horizon, and they are different for segment 3 and segment 4 of link 1. For the parameters
in the RHPC laws, the control horizon covers one control step, while for the actual control inputs,
the control horizon covers seven control steps, because of the variations of the traffic states used in
the RHPC laws.

4.2. Control settings

The nominal demands at the mainstream origin and the on-ramp are shown in Figure 3. The nom-
inal density fraction for trucks is ˇtruck D 0:1. The real demands are generated by adding random
disturbances to the nominal demands. Here, we consider two cases:

� Case 1: there are only uncertainties in the total demands;
� Case 2: there are uncertainties in both the total demands and the estimations of truck fractions.

The uncertainties in the total demand values are limited within 10% with a base value of 100 veh/h.
As for the truck fractions, we assume that the range is from 0 to 0.3. Both uncertainties for the
total demands and for the truck fractions are uniform random noise. For each case, ten scenar-
ios for uncertainties, corresponding to ten realizations of demands, were investigated to verify the
effectiveness of the scenario-based RHPC approach.

Both the nominal RHPC and the scenario-based RHPC are implemented for comparison. In the
scenario-based RHPC, ten uniform random uncertainty scenarios are used for obtaining the worst-
case objective function. These ten uncertainty scenarios are different from the aforementioned ten
realizations of demands. This is because of real realizations of future demands that are not known
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Figure 3. Nominal demands for the benchmark network.

in previous and not possible to be used in the control procedure. However, the uncertainty sce-
narios used in the scenario-based RHPC are generated in the same way as the aforementioned ten
realizations of demands.

As examples, the RHPC laws (26) and (29) for variable speed limits and (30) and (31) for ramp
metering rates are adopted in the case study. We test and compare the following approaches for the
aforementioned two cases of uncertainties in the case study:

� Nominal RHPC 1 (NRHPC 1): Law (26) + Law (30);
� Scenario-based RHPC 1 (SRHPC 1): Law (26) +Law (30);
� Nominal RHPC 2 (NRHPC 2): Law (29) + Law (31);
� Scenario-based RHPC 2 (SRHPC 2): Law (29) + Law (31);

For comparison, we also implement a standard control scheme for the combination: Law (29) +
Law (31), which are PI-ALINEA-like laws. In the standard control scheme, the parameters for the
RHPC laws are constant for the entire simulation period, and they are determined beforehand. For
the standard control scheme, we consider two cases, of which one is queue length penalty without
queue override scheme|| [37], and the other is queue length penalty with queue override scheme.
Note that (33) and (34) are also used here. For the standard control scheme, the following approaches
are tested:

� Standard control 1 (SC 1): using nominal demands with queue length penalty;
� Standard control 2 (SC 2): using ten random scenarios for uncertainties with queue length

penalty;
� Standard control 3 (SC 3): based on nominal demands with queue length penalty and queue

override scheme;
� Standard control 4 (SC 4): based on ten random scenarios for uncertainties with queue length

penalty and queue override scheme.

4.3. Results and analysis

In the remainder of this section, J TTS
imp represents the relative improvement in TTS w.r.t. the non-

control case, while Jpen represents the relative queue length constraint violation**:

Jpen D max

0
BBBB@

max
kD1;:::;kend

ncX
cD1

Œpcwo;c.k/


wmax;o
� 1; 0

1
CCCCA ; (37)

||In the queue override scheme, the ramp metering rate is set to be 1 if the maximum queue length exceeds the maximum
permitted value.

**Note that the queue length constraint violation is based on joint control through both variable speed limits and ramp
metering.
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Table I. Simulation results for NRHPC 1 and SRHPC 1, Case 1.

Approaches NRHPC 1 SRHPC 1

� 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average
J TTS

imp 7.4% 6.7% 6.5% 6.4% 6.2% 6.6% 6.1% 6.0% 5.9% 5.8%
Jpen 25.5% 9.0% 7.7% 6.6% 5.5% 13.4% 2.3% 1.9% 1.8% 1.6%
Jtot 15.4 15.6 15.6 16.3 21.2 15.6 15.7 15.7 15.9 17.3

Standard
deviation

J TTS
imp 0.3% 0.4% 0.4% 0.3% 0.2% 0.5% 0.4% 0.3% 0.3% 0.3%
Jpen 2.5% 1.2% 1.3% 2.2% 2.1% 2.1% 0.4% 0.3% 0.2% 0.3%
Jtot 0.2 0.3 0.3 0.5 2.3 0.3 0.3 0.3 0.3 0.4

NRHPC, nominal receding horizon parameterized control; SRHPC, scenario-based receding horizon parameter-
ized control.

Table II. Simulation results for NRHPC 1 and SRHPC 1, Case 2.

Approaches NRHPC 1 SRHPC 1

� 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average
J TTS

imp 6.1% 4.4% 4.7% 4.6% 4.6% 4.7% 4.3% 4.3% 4.2% 4.1%
Jpen 53.4% 21.5% 12.7% 11.2% 10.6% 18.2% 2.5% 1.6% 1.2% 1.0%
Jtot 18.9 20.9 19.3 20.3 29.7 19.1 19.2 19.3 19.4 20.3

Standard
deviation

J TTS
imp 0.3% 1.2% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.3%
Jpen 4.0% 19.5% 4.2% 2.7% 2.8% 5.3% 1.0% 0.8% 0.7% 0.6%
Jtot 0.4 5.6 0.4 0.5 3.0 0.4 0.4 0.4 0.4 0.7

NRHPC, nominal receding horizon parameterized control; SRHPC, scenario-based receding horizon parameter-
ized control.

Table III. Simulation results for NRHPC 2 and SRHPC 2, Case 1.

Approaches NRHPC 2 SRHPC 2

� 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average
J TTS

imp 9.5% 5.3% 5.1% 5.1% 5.0% 9.4% 5.0% 5.0% 5.2% 5.2%
Jpen 70.0% 4.5% 3.0% 4.0% 3.8% 66.3% 0.8% 0.8% 0.8% 0.6%
Jtot 15.0 15.8 15.8 16.2 19.7 15.1 15.8 15.9 16.0 16.4

Standard
deviation

J TTS
imp 0.9% 0.2% 0.3% 0.3% 0.2% 0.7% 0.2% 0.3% 0.3% 0.3%
Jpen 8.4% 1.2% 1.5% 2.0% 1.1% 7.1% 0.6% 0.5% 0.3% 0.4%
Jtot 0.3 0.3 0.2 0.2 1.1 0.3 0.2 0.2 0.6 0.5

NRHPC, nominal receding horizon parameterized control; SRHPC, scenario-based receding horizon parameterized
control.

Table IV. Simulation results for NRHPC 2 and SRHPC 2, Case 2.

Approaches NRHPC 2 SRHPC 2

� 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average
J TTS

imp 7.2% 4.2% 4.0% 4.0% 4.0% 6.3% 3.9% 3.7% 3.7% 3.7%
Jpen 125.7% 12.5% 10.1% 8.7% 9.1% 82.0% 2.7% 1.4% 1.0% 0.8%
Jtot 18.7 19.3 19.4 20.1 28.4 18.8 19.3 19.4 19.5 20.2

Standard
deviation

J TTS
imp 0.5% 0.3% 0.2% 0.2% 0.2% 0.6% 0.2% 0.3 0.2% 0.2%
Jpen 22.3% 5.4% 2.6% 2.9% 2.9% 17.5% 1.8% 0.8% 0.6% 0.3%
Jtot 0.4 0.4 0.4 0.6 3.1 0.4 0.4 0.4 0.5 0.4

NRHPC, nominal receding horizon parameterized control; SRHPC, scenario-based receding horizon parameter-
ized control.
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where kend is the last simulation time step of the entire simulation period, and the total performance
Jtot is defined as

Jtot D
TTStot

TTSnom
C �Jpen (38)

where TTStot is the total time spent over the entire simulation period. For each combination of the
values of � (five values), the realizations for uncertainties (ten scenarios), and the control approaches
(eight control approaches), the simulation with control is repeated ten times with different random
seeds. For each combination, the average of the results for these ten simulations is considered. The
average performance improvement and the average constraint violation of those average results for
ten different realizations for uncertainties are listed in Tables I–VIII. In order to show the difference
for different scenarios, the standard deviations of the results for these ten different realizations are
also included.

Table V. Simulation results for SC 1 and SC 2, Case 1.

Approaches SC 1 SC 2

� 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average
J TTS

imp 6.1% 11.5% 2.2% 4.1% 6.0% 12.1% 12.1% 1.9% 1.6% 2.2%
Jpen 114.2% 86.2% 62.6% 52.9% 70.0% 93.3% 90.0% 0% 0% 0.1%
Jtot 29.8 14.8 16.9 21.3 85.6 14.7 14.7 16.3 16.4 16.4

Standard
deviation

J TTS
imp 1.6% 0.5% 2.8% 1.9% 0.3% 0.3% 0.4% 0.2% 0.2% 0.2%
Jpen 18.9% 6.1% 45.5% 28.5% 8.9% 5.7% 5.8% 0% 0% 0.2%
Jtot 44.8 0.2 0.5 2.6 9.1 0.2 0.3 0.2 0.2 0.4

SC, standard control.

Table VI. Simulation results for SC1 and SC2, Case 2.

Approaches
SC 1 SC 2

� 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average
J TTS

imp 6.1% 8.7% 1.9% 2.6% 6.1% 9.3% 1.0% 0.9% 1.3% 0.4%
Jpen 241.0% 167.9% 104.5% 82.1% 151.0% 173.2% 0% 0% 1.3% 1.1%
Jtot 18.9 18.5 20.8 27.8 169.9 18.2 19.8 19.9 20.0 21.1

Standard
deviation

J TTS
imp 1.2% 0.4% 2.2% 0.6% 0.4% 0.6% 0.1% 0.2% 0.3% 0.4%
Jpen 38.4% 35.0% 65.1% 25.4% 11.8% 31.0% 0% 0% 3.0% 3.1%
Jtot 0.5 0.4 0.5 2.7 12.0 0.4 0.4 0.5 0.6 3.2

SC, standard control.

Table VII. Simulation results for SC3 and SC4, Case 1.

Approaches SC 3 SC 4

� 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average
J TTS

imp 2.0% 4.2% -1.9% 1.0% 1.9% 4.6% 4.6% 2.8% 0.7% 2.3%
Jpen 13.5% 12.2% 6.6% 6.7% 6.9% 7.9% 14.1% 0.6% 0.5% 0%
Jtot 16.3 16.0 17.0 17.2 23.2 15.9 15.9 16.2 16.6 16.3

Standard
deviation

J TTS
imp 1.2% 0.2% 1.0% 0.4% 0.7% 1.0% 0.6% 0.7% 1.0% 0.2%
Jpen 2.9% 3.8% 4.1% 3.5% 3.8% 4.0% 2.3% 1.9% 1.2% 0%
Jtot 0.4 0.2 0.3 0.3 4.1 0.3 0.3 0.3 0.3 0.2

SC, standard control.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1211–1245
DOI: 10.1002/rnc



1226 S. LIU ET AL.

Table VIII. Simulation results for SC3 and SC4, Case 2.

Approaches SC 3 SC 4

� 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average
J TTS

imp 1.1% 3.5% �1.2% 0.6% 1.6% 3.8% 2.7% 1.8% 1.0% 1.5%
Jpen 21.4% 26.2% 8.3% 10.1% 14.0% 27.7% 16.7% 0.4% 0% 0%
Jtot 19.9 19.4 20.4 21.0 33.8 19.3 19.6 19.7 19.9 19.8

Standard
deviation

J TTS
imp 0.6% 0.3% 1.2% 0.3% 0.6% 0.4% 0.5% 0.3% 0.2% 0.2%
Jpen 7.0% 7.8% 4.0% 4.9% 6.6% 4.1% 5.2% 1.3% 0% 0%
Jtot 0.5 0.4 0.6 0.7 7.0 0.4 0.4 0.4 0.4 0.4

SC, standard control.

Figure 4. Performance improvements for total time spent, Case 1.

Figure 5. Constraint violations, Case 1 (with Jpen zoomed in for � 2 ¹1; 10; 100º).

4.3.1. Comparison w.r.t. performance and constraint violations. In this section, the approaches
ignoring uncertainties are first compared with the corresponding approaches including uncertainties
with the same control laws, i.e., NRHPC 1 w.r.t. SRHPC 1, NRHPC 2 w.r.t. SRHPC 2, SC 1 w.r.t.
SC 2, and SC 3 w.r.t. SC 4. After that, all approaches are compared together based on Figures 4–9,
which display the performance improvements for TTS, constraint violations, and total performance.

(1) Results for NRHPC 1 and SRHPC 1:
According to the results for Case 1 in Table I, the performance improvements for SRHPC

1 (5.8%–6.6%) are less than the performance improvements for NRHPC 1 (6.2%–7.4%).
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Figure 6. Total performance, Case 1 (with Jtot zoomed in for � 2 ¹1; 10; 100º).

Figure 7. Performance improvements for total time spent, Case 2.

Figure 8. Constraint violations, Case 2 (with Jpen zoomed in for � 2 ¹1; 10; 100º).
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Figure 9. Total performance, Case 2 (with Jtot zoomed in for � 2 ¹1; 10; 100º).

However, NRHPC 1 leads to higher queue length constraint violations (5.5%–25.5%) than
SRHPC 1 (1.6%–13.4%) for all values of � considered. For SRHPC 1, the queue length con-
straint violations (1.6%–2.3%) are relatively small when � 2 ¹0:1; 1; 10; 100º. Comparing
the values of Jtot, we find that SRHPC 1 (15.9–17.3) results in better total performance than
NRHPC 1 (16.3–21.2) for � 2 ¹10; 100º. For both NRHPC 1 and SRHPC 1, the standard
deviations of J TTS

imp and Jtot are small, and the standard deviations of Jpen are large.
The results for Case 2 are shown in Table II. Just as for Case 1, the performance improve-

ments for SRHPC 1 (4.1%–4.7%) are less than the performance improvements for NRHPC
1 (4.4%–6.1%). For NRHPC 1, the queue length constraint violations (10.6%–53.4%, higher
than for Case 1) are higher than those for SRHPC 1 (1.0%–18.2%) for all values of � consid-
ered. For SRHPC 1, the queue length constraint violations (1.0%–2.5%) are relatively small
when � 2 ¹0:1; 1; 10; 100º; furthermore, for these values of � , the total performance for
SRHPC 1 (19.2–20.3) is not worse than the total performance for NRHPC 1 (19.3–29.7). The
standard deviations of J TTS

imp and Jtot are small for both NRHPC 1 and SRHPC 1 except for
NRHPC 1 with � D 0:1. For both NRHPC 1 and SRHPC 1, the standard deviations of Jpen

are large.
(2) Results for NRHPC 2 and SRHPC 2:

The results for Case 1 are shown in Table III. The performance improvements for SRHPC
2 (5.0%–9.4%) are slightly less than the performance improvements for NRHPC 2 (5.1%–
9.5%) when � 2 ¹0:01; 0:1; 1º. SRHPC 2 (5:2%) can even improve the performance more
than NRHPC 2 (5.0%–5.1%) when � 2 ¹10; 100º. The queue length constraint violations for
NRHPC 2 (3.0%–70.0%) are higher than those for SRHPC 2 (0.6%–66.3%) for all the values
of � considered. For � 2 ¹0:1; 1; 10; 100º, the queue length constraint violations for SRHPC 2
(0.6%–0.8%) are quite small. SRHPC 2 (16.0–16.4) results in a better total performance than
NRHPC 2 (16.2–19.7) when � 2 ¹10; 100º. For both NRHPC 1 and SRHPC 1, the standard
deviations of J TTS

imp and Jtot are small, and the standard deviations of Jpen are large.
The results for Case 2 are shown in Table IV. For all the values of � considered, the perfor-

mance improvements for SRHPC 2 (3.7%–6.3%) are less than the performance improvements
for NRHPC 2 (4.0%–7.2%). However, NRHPC 2 leads to higher queue length constraint vio-
lations (9.1%–125.7%, higher than for Case 1) than SRHPC 2 (0.8%–82.0%) for all values of
� considered. When � 2 ¹0:1; 1; 10; 100º, SRHPC 2 can reduce the queue length constraint
violations (0.8%–2.7%) to relatively low values; furthermore, for these values of � , the total
performance for SRHPC 2 (19.3–20.2) is not worse than the total performance for NRHPC 2
(19.3-28.4). For both NRHPC 1 and SRHPC 1, the standard deviations of J TTS

imp and Jtot are
small, and the standard deviations of Jpen are large.
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(3) Results for SC 1 and SC 2:
The results for Case 1 are shown in Table V. For SC 1 with all values of � considered

and for SC 2 with � 2 ¹0:01; 0:1º, the performance improvements are 2.2%–12.1%, how-
ever, the queue length constraint violations (52.9%–114.2%) are quite high. For SC 2 with
� 2 ¹1; 10; 100º, the queue length constraint violations (0%–0.1%) are small, and the perfor-
mance improvements (1.6%–2.2%) are also small. For all the values of � considered, the total
performance for SC 2 (14.7–16.4) is better than the total performance for SC 1 (14.8–85.6).
For SC 1, the standard deviations of J TTS

imp and Jpen are large in general, and the standard devi-
ations of Jtot are small except for � D 0:01. For SC 2, the standard deviations of J TTS

imp , Jpen,
and Jtot are small except for the standard deviations of Jpen with � D 100.

The results for Case 2 are shown in Table VI. For SC 1 with all values of � consid-
ered and for SC 2 with � D 0:01, the performance improvements are 1.9%–9.3%, with
high queue length constraint violations (82.1%–241.0%, higher than for Case 1). When
� 2 ¹0:1; 1; 10; 100º, the queue length constraint violations are reduced to 0%–1.3% for SC
2, but the performance improvements are quite small (0.4%–1.3%). For � 2 ¹1; 10; 100º, the
total performance for SC 2 (19.9–21.1) is better than the total performance for SC 1 (20.8–
169.9). For SC 1 and SC 2, the standard deviations of J TTS

imp and Jpen are large in general, and
the standard deviations of Jtot are small in general.

(4) Results for SC 3 and SC 4:
The results for Case 1 are shown in Table VII. For SC 3 with all values of � considered

and for SC 4 with � 2 ¹0:01; 0:1º, the performance is changed by �1.9%–4.6%, but the
queue length constraint violations (6.6%–14.1%) are still high, even they are reduced w.r.t.
SC 1 without queue override scheme. This is because when the mainstream is congested the
vehicles at the on-ramp cannot enter the main road even if the ramp metering rate is 1. For SC
4 with � 2 ¹1; 10; 100º, the queue length constraint violations (0%–0.6%) are small, while
the performance improvements (0.7%–2.8%) are also small. For SC 3 and SC 4, the standard
deviations of J TTS

imp and Jpen are large in general, and the standard deviations of Jtot are small
in general.

The results for Case 2 are shown in Table VIII. For SC 3 with all values of � considered and
for SC 4 with � 2 ¹0:01; 0:1º, the performance is changed by �1.2%–3.8%, with high queue
length constraint violations (8.3%–27.7%, higher than those for Case 1), which are reduced
w.r.t. SC 1 without queue override scheme. For SC 4 with � 2 ¹1; 10; 100º, the queue length
constraint violations are reduced to 0%–0.4%. Nevertheless, the performance improvements
(1.0%–1.8%) are also small. For SC 3 and SC 4, the standard deviations of J TTS

imp and Jpen are
large in general, and the standard deviations of Jtot are small in general.

(5) Overall comparison for all approaches:
The performance improvements for TTS (J TTS

imp ), constraint violations (Jpen), and total per-
formance (Jtot) for all approaches considered are plotted in Figures 4–9. In these figures,
the lines with marker symbols correspond to the approaches ignoring uncertainties (NRHPC
1, NRHPC 2, SC 1, and SC 3), and the lines without marker symbols correspond to the
approaches including uncertainties (SRHPC 1, SRHPC 2, SC 2, and SC 4).

For both cases of uncertainties (Case 1 and Case 2), the performance improvements for TTS
for SC 2, SC 3, and SC 4 are small in comparison with NRHPC 1, NRHPC 2, SRHPC 1, and
SRHPC 2 when � 2 ¹1; 10; 100º. For SC 1, the queue length constraint violations are much
higher than those for NRHPC 1 and NRHPC 2 for both cases of uncertainties (Case 1 and
Case 2). Including a queue override scheme, the queue length constraint violations for SC 3
are comparable with those for NRHPC 1 and NRHPC 2 for both cases of uncertainties (Case
1 and Case 2). The queue length constraint violations are reduced to low values for SRHPC 1,
SRHPC 2, SC 2, and SC 4 when the weight � for the queue length penalty is large enough, for
example, � 2 ¹1; 10; 100º. In Jtot, a larger weight � for the queue length penalty corresponds
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Figure 10. Queue lengths at the origin, Case 1.

Figure 11. Queue lengths at the origin, Case 2.

to assigning more importance to satisfying the queue length constraint. When the weight � is
large enough (e.g., � 2 ¹10; 100º), the total performance for SRHPC 1, SRHPC 2, SC 2, and
SC 4 is better than NRHPC 1, NRHPC 2, SC 1, and SC 3.

4.3.2. Analysis for queue lengths and control inputs. Here, one realization for Case 1 of uncertain-
ties and one realization for Case 2 of uncertainties are chosen as examples. The queue lengths for
the origin, the queue lengths for the on-ramp, variable speed limits, and ramp metering rates for all
the considered control approaches with � D 100 are respectively shown in Figures 10–17. The plots
of other traffic variables (origin flows, on-ramp flows, flows for segments, speeds for segments, and
densities for segments) that are used for describing the traffic network are included and discussed
in Appendix A.
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Figure 12. Queue lengths at the on-ramp, Case 1.

Figure 13. Queue lengths at the on-ramp, Case 2.

According to Figures 10–11, the queue lengths at the origin are decreased in comparison with
the non-control cases for both the nominal RHPC approaches (NRHPC 1 and NRHPC 2) and the
scenario-based RHPC approaches (SRHPC 1 and SRHPC 2). For standard control approaches (SC
1, SC 2, and SC 4), the queue lengths at the origin can also be reduced, except for SC 3 from
t D 0:8 h on.

According to Figures 12–13, the control approaches ignoring uncertainties (NRHPC 1, NRHPC 2,
SC1, and SC 3) lead to queue length constraint violations. These queue length constraint violations
are effectively reduced by the control approaches considering uncertainties (SRHPC 1, SRHPC 2,
SC 2, and SC 4).

As shown in Figures 14 and 16, the variable speed limits of the nominal RHPC approaches
(NRHPC 1 and NRHPC 2) are similar with those of the scenario-based RHPC approaches (SRHPC

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1211–1245
DOI: 10.1002/rnc



1232 S. LIU ET AL.

Figure 14. Variable speed limits, Case 1.

Figure 15. Ramp metering rates, Case 1.

1 and SRHPC 2), and there are no large fluctuations for both of them. However, the standard control
approaches (SC 2, SC 3, and SC 4) except SC 1 yield variable speed limits that fluctuate more than
the nominal RHPC approaches (NRHPC 1 and NRHPC 2) and the scenario-based RHPC approaches
(SRHPC 1 and SRHPC 2).

Figures 15 and 17 show the ramp metering rates. The nominal RHPC approaches (NRHPC 1
and NRHPC 2) and the scenario-based RHPC approaches (SRHPC 1 and SRHPC 2) can appro-
priately address the variations in the demand for the on-ramp, that is, the ramp metering rates
increase when there is a peak in the on-ramp demand from t D 0:1 h to t D 0:35 h (as shown in
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Figure 16. Variable speed limits, Case 2.

Figure 17. Ramp metering rates, Case 2.

Figure 3). However, for the standard control approaches, the ramp metering rates do not increase in a
similar way.

4.3.3. Conclusions of results. According to the results of the previous approaches, we can give the
following conclusions:

(1) The nominal RHPC approaches ignoring uncertainties (NRHPC 1 and NRHPC 2) can improve
the performance with high queue length constraint violations for all the considered values of
the weight � for the queue length penalty.

(2) The scenario-based RHPC approaches including uncertainties (SRHPC 1 and SRHPC 2)
can also improve the performance, while there may be a small sacrifice in the performance
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improvement compared with the nominal RHPC approaches ignoring uncertainties (NRHPC
1 and NRHPC 2). The queue length constraint violations are significantly reduced w.r.t. the
nominal RHPC approaches ignoring uncertainties (NRHPC 1 and NRHPC 2) when the weight
� for the queue length penalty is large enough.

(3) The scenario-based RHPC approaches including uncertainties (SRHPC 1 and SRHPC 2)
are more conservative in improving performance and satisfying the queue length constraints
than the nominal RHPC approaches ignoring uncertainties (NRHPC 1 and NRHPC 2). This
may be because the scenario-based RHPC approaches including uncertainties (SRHPC 1 and
SRHPC 2) are optimizing the worst case among all the considered scenarios.

(4) The standard control approach ignoring uncertainties (SC 1) can improve the control perfor-
mance; however, the queue length constraint violations are quite high for all the considered
values of the weight � for the queue length penalty. Even when a queue override scheme is
included in the standard control approach ignoring uncertainties (SC 3), there are still high
constraint violations. This is because when the mainstream is congested, the vehicles at the
on-ramp cannot enter the main road even if the ramp metering rate is 1.

(5) The standard control approaches including uncertainties (SC 2 and SC 4) can significantly
reduce the queue length constraint violations when the weight � for the queue length penalty is
large enough. However, the performance improvements for these approaches are less than tho-
se for the scenario-based RHPC approaches including uncertainties (SRHPC 1 and SRHPC 2).

(6) When there are also uncertainties in the truck fractions (Case 2), the queue length constraint
violations may be even higher in comparison with the case that there are only uncertainties in
the total demand (Case 1).

(7) There are still small queue length constraint violations for the approaches including uncertain-
ties (SRHPC 1, SRHPC 2, SC 2, and SC 4). This is probably because we use only a limited
number of scenarios for the uncertainties when solving the control problem.

(8) When the weight � for the queue length penalty is large enough (in general, � D 1 in our
case study) for the approaches including uncertainties (SRHPC 1, SRHPC 2, SC 2, and SC
4), the queue length constraint violations are reduced significantly. Increasing this weight �
to be even larger (� 2 ¹10; 100º) does not significantly affect the performance improvements
and the ability of reducing queue length constraint violations. However, a larger weight � for
the queue length penalty corresponds to putting more emphasis on satisfying the queue length
constraint. When the weight � is large enough (e.g., � 2 ¹10; 100º), the total performance for
the approaches including uncertainties (SRHPC 1, SRHPC 2, SC 2, and SC 4) is better than
that for the approaches ignoring uncertainties (NRHPC 1, NRHPC 2, SC 1, and SC 3).

(9) According to standard deviations, the RHPC approaches (NRHPC 1, NRHPC 2, SRHPC 1, and
SRHPC 2) are comparable in the performance improvement for different scenarios considered,
but they differ in the queue length constraint violations for different scenarios considered. Note
that for the scenario-based RHPC approaches (SRHPC 1 and SRHPC 2), the queue length con-
straint violations are minor when the weight � for the queue length penalty is large enough;
although the relative standard deviations are large, the actual variations in these violations
are still small. The standard control approaches SC 1, SC 3, and SC 4 differ in both the per-
formance improvement and the queue length constraint violations for the different scenarios
considered.

(10) The variable speed limits of the standard control approaches SC 2, SC 3, and SC4 fluctuate
more than those of the RHPC approaches (NRHPC 1, NRHPC 2, SRHPC 1, and SRHPC 2).
The RHPC approaches (NRHPC 1, NRHPC 2, SRHPC 1, and SRHPC 2) can appropriately
address the peak in the on-ramp demand by increasing the ramp metering rates at correspond-
ing time; however, the standard control approaches (SC 1, SC 2, SC 3, and SC4) do not increase
the ramp metering rates in a similar way.

In conclusion, we can say that the scenario-based RHPC approaches are effective for satisfying
the queue length constraint, at the cost of a small sacrifice in performance. Avoiding high queue
length constraint violations is significant for those on-ramps with strict limits on queue lengths,
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for example, the on-ramps that are connected to busy urban stretches or intersections in upstream.
High queue length constraint violations at these on-ramps may cause spillback to upstream; thus,
scenario-based RHPC approaches are helpful for these on-ramps.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a tractable scenario-based RHPC approach for freeway networks.
In this approach, the worst-case scenario among a selected number of scenarios for uncertainties
is considered in the control design step. On the basis of traffic states, we have developed several
RHPC laws for freeway networks based on the multi-class METANET model. In addition, a soft
queue length constraint penalty is included in the objective function instead of hard constraint, to
prevent infeasible optimization problems under uncertainties. In the analysis of the uncertainties for
freeway networks we in particular consider uncertainties in the demand profiles, consisting of the
uncertainties in the total demand and the uncertainties in the estimations of the fractions of different
classes of vehicles. However, other types of uncertainties can also be dealt with using the proposed
scenario-based RHPC approach.

A case study was implemented to assess the effectiveness of this newly proposed approach.
Two combinations of the RHPC laws for VSL and RM were considered: VSL law based on
the variations in the speeds and densities from one segment to the next + ALINEA-like RM
law and PI-ALINEA-like VSL law + PI-ALINEA-like RM law, for which both nominal RHPC
approaches and scenario-based RHPC approaches were implemented. Standard control approaches
(PI-ALINEA-like) were implemented for comparison, and a queue override scheme was also con-
sidered as extra comparison. The results show that the nominal RHPC approaches may lead to
high queue length constraint violations even if the weight for the queue length penalty is high.
The scenario-based RHPC approaches are more conservative than the nominal RHPC approaches,
and they can significantly reduce the queue length constraint violations when the weight for the
queue length penalty is high enough, with small sacrifices in performance improvements. The
standard control approach ignoring uncertainties may lead to high queue length constraint viola-
tions, which are still high even when the queue override scheme is used. This is because when
the mainstream is congested, the vehicles at the on-ramp cannot enter the main road even if the
ramp metering rate is 1. The standard control approaches including uncertainties can reduce the
queue length constraint violations to low level when the weight for the queue length penalty
is large enough; however, the performance improvements are less than those for the scenario-
based RHPC approaches. Overall, we can conclude that scenario-based RHPC is capable of
significantly improving performance without high queue length constraint violations for the given
case study.

For the future research, we will consider further extension of the RHPC laws for multi-class
traffic networks, validation in real motorway with real data and larger freeway networks, theoretical
guarantees for scenario-based RHPC, and the sensitivity to model parameters. In addition, it is hard
to analyze analytically the stability and robustness for nonlinear systems, in-depth assessments using
simulations for multiple setups and scenarios can be implemented in the future.

APPENDIX: EXAMPLES FOR THE PLOTS OF TRAFFIC VARIABLES

For Case 1 and Case 2 of uncertainties, the same realizations as in Section 4.3.2 are chosen as
examples. The origin flows, on-ramp flows, flows for segments, speeds for segments, and densities
for segments for all the considered control approaches with � D 100 are respectively shown in
Figures A.1–A.16.

The flows for the mainstream origin and the on-ramp are plotted in Figures A.1–A.4. We can see
that the flows for the mainstream origin are similar for all the considered approaches except for SC 1.
For different control approaches, the flows for the on-ramp correspond to ramp metering rates shown
in Figures 15 and 17. The flows for segments are plotted in Figures A.5–A.8. As shown in these
figures, the flows for the standard control approaches (SC 1, SC 2, SC 3, and SC 4) fluctuate more
than those for the RHPC approaches (NRHPC 1, NRHPC 2, SRHPC 1, and SRHPC 2). The speeds
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Figure A.1. Flows at the origin and the on-ramp for cars, Case 1.

Figure A.2. Flows at the origin and the on-ramp for trucks, Case 1.

for segments are plotted in Figures A.9–A.12. The speeds for the standard control approaches (SC
1, SC 2, SC 3, and SC 4) fluctuate more than those for the RHPC approaches (NRHPC 1, NRHPC 2,
SRHPC 1, and SRHPC 2). The fluctuations in the flows and speeds for segments correspond
to variable speed limits shown in Figures 14 and 16. The densities for segments are plotted in
Figures A.13–A.16. According to these figures, the evolution of the densities for segments is similar
for all the considered approaches.
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Figure A.3. Flows at the origin and the on-ramp for cars, Case 2.

Figure A.4. Flows at the origin and the on-ramp for trucks, Case 2.
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Figure A.5. Flows for segments, cars, Case 1.

Figure A.6. Flows for segments, trucks, Case 1.
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Figure A.7. Flows for segments, cars, Case 2.

Figure A.8. Flows for segments, trucks, Case 2.
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Figure A.9. Speeds for segments, cars, Case 1.

Figure A.10. Speeds for segments, trucks, Case 1.
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Figure A.11. Speeds for segments, cars, Case 2.

Figure A.12. Speeds for segments, trucks, Case 2.
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Figure A.13. Densities for segments, cars, Case 1.

Figure A.14. Densities for segments, trucks, Case 1.
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Figure A.15. Densities for segments, cars, Case 2.

Figure A.16. Densities for segments, trucks, Case 2.
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