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Abstract—Computer-aided simulations are routinely
used to predict a prototype’s performance. High-fidelity
physics-based simulators might be computationally expen-
sive for design and optimization, spurring the development
of cheap deep-learning surrogates. The resulting surro-
gates often struggle to generalize and predict novel scenar-
ios beyond their training domain. We propose a two-stage
methodology addressing the challenge of generalization.
It employs physics-based simulators, supplemented with
ordinary differential equations integrated into the recur-
rent architecture, to learn the intrinsic dynamics. The pro-
posed approach captures the inherent causality and gen-
eralizes the dynamics irrespective of a data source. The
presented numerical experiments encompass five funda-
mental structural engineering scenarios, including beams
on Winkler foundations based on Euler–Bernoulli and Timo-
shenko theories, beams under moving loads, and catenary-
pantograph interactions in railways. The proposed method-
ology outperforms conventional recurrent methods and
remains invariant to data sources, showcasing its effi-
cacy. Numerical experiments highlight its prospects for de-
sign optimization, predictive maintenance, and enhancing
safety measures.

Index Terms—Catenary-pantograph, causality, finite ele-
ment, generalization, moving load, neural differential equa-
tions, physics-informed neural networks (PINNs).

I. INTRODUCTION

COMPUTER-AIDED dynamic simulations, which encom-
pass the concept of digital twins, are pivotal across
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engineering industries [1], including structural, railway, automo-
tive, manufacturing, and aerospace, among others. These simu-
lations offer a cost-effective and efficient alternative to physical
prototyping, saving time and resources. Simulating complex
engineering systems and subsystems aids in comprehensive
testing and validation and assists in analyzing and optimizing
their performance and designs [2].

Several methods, including numerical solvers and deep learn-
ing, are utilized to simulate the dynamics of engineering struc-
tures. For instance, the finite element method (FEM) serves as
a backbone for engineering software and is widely used for
modeling, designing, and optimizing structural dynamics [3].
Deep learning-based methods are employed as surrogates to
simulate the underlying dynamics [4]. One such deep learning-
based approach is physics-informed machine learning (PIML),
which integrates physical principles into neural network archi-
tecture [5]. These simulators collectively provide robust tools
for realistic and efficient simulations of engineering systems.

Industrial scenarios such as design optimization necessitate
numerous simulations with varying materials and conditions
influencing the dynamics. Numerical solvers require repetitive
iterations for each parameter change, increasing computational
cost [6]. Each iteration is particularly challenging for long-time
integration problems, where the long-term behavior of the en-
gineering systems needs to be analyzed. In addition, as the
number of degrees of freedom increases, the number of simu-
lations escalates exponentially, rendering the process laborious
and time-consuming. Similarly, in deep learning, predictions
outside the training domain are challenging for engineering
simulations [7], requiring multiple model training for varying
parameter values. Thus, long-time predictions and incorporating
parameter variations exacerbate the simulation challenge across
numerical and deep learning methodologies.

Current engineering dynamic simulators are matured, yet
predictions outside the training domain, termed extrapolation
or generalization, remain challenging [8]. An ideal simulator
should provide accurate predictions inside the training domain
and reasonable accuracy for generalization scenarios. Mitigating
the problem of generalization necessitates a method that can
predict out-of-domain and complement the current dynamic
solvers. A potential approach addressing this challenge involves
leveraging the current simulation strategies and coupling them
with a method to provide reliable generalization predictions,
reducing the problem to a two-stage strategy.
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The first stage involves the traditional solver simulating the
problem precisely in the training domain. The second stage
utilizes the predictions from the first stage to generalize beyond
the training domain. For example, for a moving load problem
like a train on the railway track, the quantity of interest is
track deflection under different loadings. For certain loadings,
deflections could be simulated using a traditional solver, such as
FEM, and deflections for unseen loadings could be predicted in
a second stage utilizing the FEM deflections.

For the second stage, prior knowledge available is the sim-
ulated data in the training domain, and utilizing it to predict
in the generalized domain is nontrivial [9]. A potential way is
to leverage the causality of the underlying dynamics from the
trained domain and use them in an autoregressive approach to
predict the quantities of interest in the untrained domain. Learn-
ing the inherent causality would allow reasonable generalization
by capturing the underlying dynamics, structure, and symmetry
of the problem.

Attention-based and recurrent neural architectures are viable
for sequence modeling and prediction tasks. However, attention-
based models require substantial data and disregard the underly-
ing sequential causality inherent in the physical simulations. Re-
current neural networks (RNNs) are well-known to model time-
series data. However, long sequences pose exploding and van-
ishing gradients problem (EVGP), which can even be observed
with advanced gated architectures [10] like the long short-term
memory (LSTM) [11] and gated recurrent unit (GRU) [12]. The
challenge of EVGP could be mitigated by employing ordinary
differential equations (ODEs) to update the hidden states of the
recurrent architecture, facilitating efficient dynamic learning.
Recent methods like coupled-oscillatory recurrent neural net-
work (CoRNN) [13] and long expressive memory (LEM) [14]
do not exhibit the EVGP and perform well for several sequential
artificial intelligence (AI) tasks. This work proposes to merge
dynamic simulations with recurrent architectures employing
ODEs to update the hidden states, namely, CoRNN and LEM.
The proposed two-stage methodology exploits the causality and
learns temporal and parametric dependencies, enhancing the
accuracy of generalization predictions of engineering dynamic
simulations.

Five fundamental problems within structural engineering are
examined to validate the proposed methodology. Simulation of
beam dynamics under dynamic loading conditions is crucial for
precise structural analysis and design [15]. Beams on Winkler
foundations are crucial in civil engineering, providing stability
by distributing loads, minimizing buckling [16], and resisting
against vibrations [17]. Concrete beams are used extensively
in the construction industry [18]. They are commonly used in
applications like railway tracks, pile foundations, and composite
elastomers, where understanding their behavior is essential for
maintaining structural integrity and optimizing designs.

The first two cases are based on well-known Euler–Bernoulli
and Timoshenko beam theories on the Winkler foundation.
Both beam theories are fundamental in structural mechanics.
Euler–Bernoulli beam theory models the behavior of slender,
linear beams under various loading conditions, assuming the
plane sections of the beam to remain plane and perpendicular to
the cross-section where no longitudinal stresses or strains occur.

The Euler–Bernoulli theory also assumes the shear deformations
and rotational effects to be negligible [19]. This simplification
allows the calculation of stresses and deflections in beams under
static and dynamic loads by reducing the three-dimensional
problem of beam bending to a one-dimensional model [20].
The governing equation is derived from equilibrium conditions
(using Newton’s laws or Lagrangian mechanics), material con-
stitutive laws, and geometric properties, leading to a fourth-order
differential equation.

The Timoshenko beam theory builds on the Euler–Bernoulli
theory by including the effects of shear force. Unlike the Euler–
Bernoulli theory, which assumes that beam cross-sections re-
main flat and perpendicular to the neutral axis after deformation,
Timoshenko theory accounts for additional angular rotation due
to shear strain [21], affecting the displacement by shear and
bending deformations. The theory introduces an extra degree
of freedom, represented by the angular rotation. Therefore, the
key quantities of interest are the displacement and the angular
rotation. These quantities of interest are computed by solving
the governing equations, consisting of two coupled second-order
partial differential equations.

The third case is the moving load problem, studying the
deflection of the beam under different loadings. Understanding
beam behavior under moving loads is essential for structural
health monitoring and maintaining infrastructure integrity. For
the fourth experiment, real-world catenary-pantograph interac-
tions in railway systems are studied. Comprehending the vertical
displacement of the catenary contact wire under various train
speeds is critical for railway infrastructure safety and design.
Varying speeds induce dynamic loads affecting the stability
of the catenary. Accurate contact wire uplift predictions aid
engineers in estimating the undesired condition of the catenary,
which directly influences the power supply safety and stability
of the traction power system, averting potential disruptions
and accidents. The final experiment deals with estimating the
unknown force applied on a system of Timoshenko beams by
solving an inverse problem.

The main contributions of this work can be summarized as
follows.

1) This work introduces a two-stage approach for generaliz-
ing engineering dynamic simulations. First, dynamics are
simulated using a state-of-the-art simulator preferred for
the application, followed by classical mathematical mod-
els (ODEs) infused in neural architecture to generalize
the dynamics.

2) AI for engineering and industry trained on specific res-
olutions often struggles to generalize well to unseen
resolutions. The proposed work tackles this issue through
a resolution invariant pipeline where both stages can
process data at different resolutions.

3) The proposed workflow efficiently generalizes the dy-
namics in the time domain for spatio-temporal engineer-
ing systems without using any data from the untrained
time domain.

4) Furthermore, for spatio-temporal parametric systems, the
workflow eliminates tedious remeshing and resimulation
in computer-aided simulation software for novel param-
eters belonging to the parameter space.
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5) The performance of the proposed approach is evaluated on
four different dynamic simulation problems in structural
engineering, including real-world catenary-pantograph
systems, demonstrating superior performance compared
to traditional recurrent architectures.

The rest of this article is organized as follows. Section II
details the related works to this article. Section III provides
an overview of the problem statement. Section IV presents the
proposed two-stage methodology in detail to enhance the gen-
eralization. Section V presents the performed numerical experi-
ments to validate the proposed methodology. Finally, Section VI
concludes this article.

II. RELATED WORK

This work focuses on generalizing spatio-temporal parametric
engineering dynamics in temporal and parametric space. Indus-
trial applications often necessitate simulating spatio-temporal
parametric systems as discussed in the works of [22], [23],
[24]. In particular, the authors in [23] and [24] discussed the
challenges and importance of spatio-temporal simulations in
industry. In addition to sharing the core idea of simulating spatio-
temporal parametric dynamics, this work proposes a method to
generalize the dynamics in untrained domains, making it more
applicable to real-world situations where systems may need to
be deployed in unseen situations for which data collection may
not even be possible at priori [9], [25].

In other works, generalization of deep learning-based meth-
ods for industrial tasks has been explored in [25], [26], and [27],
among others, aligning with the motivation of this work. How-
ever, this work proposes a generic two-step approach enabling
the investigation through the state-of-the-art simulator and cou-
pling it with ODE-based recurrent architecture to capture the
intrinsic dynamics. This approach democratizes the challenge
of generalization and hence could be used by a larger industrial
and engineering community.

The second stage in the proposed methodology employs
ODEs in the recurrent neural architecture to enhance generaliza-
tion. Pioneered by the seminal works of [28], neural ODEs have
been explored for cooling-system prediction [29], process qual-
ity evaluation [30], and remaining useful life estimation [31].
However, this work posits that neural differential equations-
based architectures capture the causality better than the gated
architectures, improving the generalization ability of the learned
model and making it distinct from the aforementioned works.

III. PROBLEM STATEMENT

This section presents an abstract formulation of the gener-
alization problem. In general, spatio-temporal parametric sys-
tems are governed by an operator D[u(x, t;μ)] = 0, where,
(x, t) ∈ D × T . Here, D ⊂ R and T ⊂ R represent the spatial
and temporal domain, respectively. In addition, μ represents the
parameters in the parametric space M ⊂ R, and u ∈ U ⊂ Rd is
the quantity of interest in a d-dimensional space. The operatorD
could be explicitly known, for instance, the Euler–Bernoulli and
Timoshenko partial differential equations (PDEs) governing the

Fig. 1. Schematic of the proposed methodology: Two-stage method-
ology starts with defining the problem and training and testing domain
in which generalization is sought. A dynamic simulator is then utilized in
the first stage to simulate the problem in the training domain, whose so-
lutions are reshaped to feed into the second stage comprising recurrent
neural ODEs. Neural ODEs are trained on the simulator predictions. The
trained neural ODEs are used to predict in the testing domain.

beam dynamics, or could be unknown as in the case of real-world
catenary-pantograph system.

The proposed approach transcends traditional limitations and
seamlessly applies across temporal and parametric domains.
Hence, to formalize the generalization problem, the domain
Ω hereafter invariantly represents the domain T or M . The
entire spatio-temporal parametric space is divided into two
disjoint setsX1 andX2, whereX1 := D × Ω andX2 := D × Ω′.
Here, Ω′ is the generalized temporal or parametric domain
with inf(Ω′) ≥ sup(Ω), which implies that testing is performed
for ω′ ∈ Ω′ ≥ ω ∈ Ω. Concretely, the temporal or parametric
space is divided into two segments: Ω := [0,Ωtrain] and Ω′ :=
(Ωtrain,Ωtest], where Ωtest > Ωtrain > 0. The numerical or deep
learning-based simulator is used in the first stage to simulate
the dynamics in X1, and the problem reduces to predicting
the dynamics in the testing domain X2 in the second stage.
Concretely, the objective is to make predictions beyond X1,
i.e., on X2, and to assess how well the trained models could
be generalized through the two-stage training strategy.

IV. METHODOLOGY

The proposed two-stage methodology merges dynamic sim-
ulators and neural ODE-based methods to generalize the dy-
namics. The key steps of the proposed two-stage methodology
are presented in Algorithm 1 and Fig. 1. The first stage en-
tails simulating the engineering dynamics through a preferable
simulator tailored for the application, providing flexibility to
the workflow. Simulators are computational tools in form of
software or modules that act as surrogates for the real-world
systems through mathematical models and algorithms, allowing
engineers and scientists to analyze and predict the performance
of complex systems under various conditions without the need
for physical prototypes.

However, numerical methods like FEM or a deep learning
approach like physics-informed neural networks (PINNs) [32]
simulate the problem in a confined domain. To mitigate the
challenge of predictions in a larger domain, the second stage
in the proposed methodology employs neural ODEs to capture
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the intrinsic dynamics from the data generated in the first stage
and generalize the dynamics to larger domains, making them
further applicable and advantageous for real-world systems.
The following sections describe both the stages of the proposed
methodology in detail.

A. First Stage—Numerical/PIML Simulator

This article employs two dynamic simulators to exemplify that
the proposed methodology remains invariant to the simulator
employed in the first stage. The first simulator employed is
an advanced version of a PINN that enforces causality in the
learning algorithm termed causal PINN [6], [33]. Causal PINN
predictions of beam dynamics are utilized to test temporal gen-
eralizations. The simulator causal PINN could be described by
considering an abstract PDE with implicit initial and boundary
conditions defined by

K(x, t) := D[u](x, t)− f(x, t) ∀(x, t) ∈ D × T ⊂ Rd × R
(1)

where K is the abstract physical equation and D[.] denotes the
differential operator, u as the quantity of interest, x ∈ D ⊂ Rd,
t ∈ T ⊂ R for d ≥ 1. The spatial domain D is contained in
the d-dimensional Cartesian space and, T denotes the temporal
domain, f(x, t) refers to the external force.

Causal PINN is based on a feedforward neural network,
where the inputs (x, t) map to output (u) through an iterative
composition of hidden layers. To train causal PINN, the loss
function containing the physical model of a PDE is minimized
along with initial and boundary conditions. The loss function
is formulated such that the network first minimizes the loss
corresponding to lower times before resolving the solutions at
higher times. Mathematically, the loss function is defined as

J = Min
θ

1
N

[
L(t1) +

N∑
i=2

e−η
∑i−1

k=1 L(tk)L(ti)

]
(2)

where the loss components are defined as

L(tn) =
1
N

N∑
n=1

||K(x, tn)||2 (3)

where (x, tn) represents the training tuple for each time step
n. The total number of training points inside the computational
domain is denoted by N , and η is the causality hyperparameter,
which depends on the complexity of the problem. Minimizing
the loss function (2) using a suitable optimization algorithm
provides optimal parameters θ. Following the causal PINN
training, its testing is conducted on kt uniform time steps in T
and kx uniform locations in D, making a total of kt · kx testing
points within the training domain.

The second simulator employed is a FEM. The physical
models, which are the PDEs governing the beam dynamics,
are available for causal PINN. Several systems in engineer-
ing and industry do not possess a known operator and are
rather unknown. The efficacy of the proposed methodology is
demonstrated for such scenarios by taking the solutions from
FEM as the output of the first stage, considering the governing
model and solution strategy as a black box. FEM predictions

Algorithm 1: Proposed Two-Stage Methodology for Gen-
eralizing Dynamic Simulators.

Input: Problem and domain, (x, t;μ) ∈ D × T ×M .
Output: Generalized dynamic predictions, u(x, t;μ) ∈ X2.
Stage 1: simulation with causal PINN or FEM:
1: if Causal PINN then
2: Train causal PINN.
3: Test causal PINN for u(x, t;μ) ∈ X1 at kt time steps.
4: else
5: Collect spatio-temporal data for FEM in X1.
6: end if

Stage 2: Training neural differential equations:
7: Integrate ODEs into the recurrent architecture for

updating hidden states.
8: Utilize predictions from Stage 1 to train LEM or

CoRNN in X1.
Loop for generalization:
9: for i = (kt + 1) to (kt +m) do

10: Input condition at time step i− 1.
11: Use trained model from Stage 2 to predict dynamics

at parametric or time step i in X2.
12: end for
13: return u(x, t;μ) ∈ X2

are utilized to test parametric generalizations. Specifically, in
one of the numerical experiments, deflection profiles of beams
with different loading are taken as the output of the first stage.
Here, the parameter is the load, and the quantity of interest is
the deflection profile. Another numerical experiment studies the
real-world uplift of catenary contact wire in railway systems,
depending on the different speeds of the train. The solutions
obtained from the causal PINN and FEM are reshaped for further
use in the second stage.

B. Second Stage—Neural ODE

Generalization is an open challenge for both methods, causal
PINN and FEM. The second stage aims to mitigate this chal-
lenge by employing neural ODE-based architecture to capture
temporal and parametric dependency. Neural ODEs model the
evolution of hidden states over time using differential equations,
leveraging the longstanding potential of ODEs in handling com-
plex temporal dynamics. In particular, this work employs two
neural ODE methods, CoRNN [13] and LEM [14], processing
the outputs from the first stage as sequential data and predicting
the dynamics outside the training domain. CoRNN employs
second-order ODE to model the dynamics of hidden states
preserving long-term dependencies and mitigating EVGP. By
incorporating damping factors and oscillatory components in the
ODE, CoRNN enforces the computed hidden states to remain
within bounds, enhancing the training stability. LEM employs
a system of first-order coupled differential equations to update
the hidden states. The coupled equations allow LEM to maintain
a robust representation of sequential data, addressing EVGP
typical with RNN-based methods. In the following, the ODEs
used for CoRNN and LEM are presented in detail.
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1) Coupled-Oscillatory Recurrent Neural Network: CoRNN
updates the hidden states, y = y(ω) ∈ Rm by solving the
second-order ODE

y′′ = σ (Wy +Wy′ + V u+ b)− γy − εy′. (4)

Here,y represents the hidden state,y′ andy′′ denote the first and
second derivative of the hidden state. The activation function is
σ(u) = tanh(u). The weight tensors for the hidden state and
its first derivative are represented by W ,W ∈ Rm×m and the
bias term is b ∈ Rm. The weight tensor for the input (u ∈ Rkx)
is V ∈ Rm×kx . The terms γ, ε > 0 are the hyperparameters
representing oscillation frequency and damping.

The motivation to employ ODE (4) to update the hidden states
is attributed to its underlying capabilities in modeling compli-
cated nonlinear oscillations [13]. The dynamics of the ODE
could be analyzed for a simplified case by setting kx = m = 1
in (4) with an identity activation function σ(u) = u. Consid-
ering the terms W = W = V = b = ε = 0, the ODE reduces
to, y′′ + γy = 0, modeling the well-known spring-mass simple
harmonic motion with frequency γ. Including further terms in
this simplified ODE, like ε > 0, induces damping in the system.
For a nonzero vector V , the system experiences a driving force
proportional to the input signal u, where V and b modulate
the influence of this force. The tensor W affects the oscillation
frequency, while W influences the damping effect within the
system. In addition, introducing the tanh activation function
introduces a nonlinear dynamic response in the oscillator.

Substituting z = y′(ω) ∈ Rm, (4) could be transformed to
the first-order system

y′ = z, z′ = σ (Wy +Wz + V u+ b)− γy − εz. (5)

Discretizing (5) using an explicit scheme with a time step 0 <
Δt < 1

yn = yn−1 +Δtzn

zn = zn−1 +Δtσ (Wyn−1 +Wzn−1 + V un + b)

−Δtγyn−1 −Δtεzn. (6)

In the coupled-ODE system withm > 1, each neuron updates
its hidden state by incorporating external input signals and other
neurons. The diagonal components of W , along with the scalar
hyperparameter γ, regulate the intrinsic oscillatory frequency
of individual neurons, whereas the diagonal elements of W ,
together with the hyperparameter ε, govern the damping effects.
The off-diagonal entries of these matrices serve to modulate
the interaction dynamics between neurons. Further deep net-
works yield rich global dynamics, suggesting that such oscillator
networks can achieve high expressivity, making them capable
of approximating complex outputs from sequential inputs [13].
Finally, the output is computed through a learnable linear trans-
formation, νn ∈ Rkx with νn = Qyn and Q ∈ Rkx×m.

2) Long Expressive Memory: Akin to CoRNN, LEM uses
a system of differential equations to update the hidden states.

However, the system of equations to be solved in LEM is

y′ = σ̂(W 2y + V 2u+ b2)� [σ(W yz + V yu+ by)− y]

z′ = σ̂(W 1y + V 1u+ b1)� [σ(W zy + V zu+ bz)− z].
(7)

In addition to the previously stated learnable quantities, LEM
additionally learns weight tensors W1,2,Wy,z ∈ Rm×m, weight
tensors for input V1,2, Vy,z ∈ Rm×kx , bias vectors b1,2, and
by,z ∈ Rm. The function σ̂ and � represent the sigmoid acti-
vation function and componentwise product of vectors, respec-
tively. y and z are hidden state vectors. The output of LEM is
linearly transformed in the same way as in the case of CoRNN.
A discretization of (7) using explicit Euler scheme results in

Δtn = Δtσ̂(W 1yn−1 + V 1un + b1)

Δtn = Δtσ̂(W 2yn−1 + V 2un + b2)

zn = (1 −Δtn)� zn−1

+Δtn � σ(W zyn−1 + V zun + bz)

yn = (1 −Δtn)� yn−1

+Δtn � σ(W yzn + V yun + by). (8)

The proposed methodology utilizes the simulator solutions to ex-
trapolate through the neural ODE methods, CoRNN, and LEM.
However, a key challenge for recurrent neural architectures is
EVGP. The theoretical analysis of CoRNN and LEM presented
in [13] and [14], and collated in the form of propositions below,
motivate employing them for extrapolating the beam dynamics.
The detailed proofs of bounds can be found in [13] and [14].

Proposition 1: The hidden states of CoRNN (yn) and LEM
(yn, zn) are bounded, eliminating the possibility of chaotic
hidden state behavior [13], [14].

Proposition 2: Let L(θ) denote the L2 loss function to be
minimized for training CoRNN and LEM with trainable pa-
rameters θ ∈ Θ, where Θ = [W ,W,V , b] for CoRNN, and
Θ = [W1,2,y,z,V1,2,y,z, b1,2,y,z] for LEM. Then, the gradients
of the loss function with respect to the trainable parameters is
bounded, i.e., |∂L∂θ | ≤ κ, where κ depends on the parameters of
the considered model [13], [14].

The following section presents the numerical experiments to
validate the proposed methodology.

V. NUMERICAL EXPERIMENTS

Five distinct numerical experiments concerning generaliz-
ing dynamic simulations for forward and inverse problems
are presented. The complexity of the experiments ranges from
fundamental beam theories for beams to real-world catenary-
pantograph interactions in railway systems. The first two exper-
iments involve simulating PDEs modeled by the Euler–Bernoulli
and Timoshenko theories on the Winkler foundation, where
generalization is sought in the temporal domain. The third and
fourth experiments generalize in the parametric space. The third
experiment is the moving load problem, which predicts the
mid-point beam deflection under various loading conditions.
The fourth experiment involves predicting catenary contact wire

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

uplift for novel train speeds, considering it as a parameter. The
final experiment aims to solve an inverse problem by estimating
the applied force on a system of Timoshenko beams.

A. Test Cases

1) Euler–Bernoulli and Timoshenko Beam on the Winkler
Foundation: The first two experiments are the PDEs governing
the Euler–Bernoulli and Timoshenko beams on the Winkler
foundation, described in detail in [6]. For the dynamic simu-
lator in the first stage, causal PINN is employed. Four hidden
layers, 200 neurons, and the tanh activation function are utilized
for training causal PINN. Limited memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) optimizer is utilized with a learning
rate of 0.1, with 10 000 epochs. The causality hyperparameter
is 5, and X1 is divided into 100-time steps. The training utilized
500 initial points, 1000 boundary points, and 10 000 interior
points. For both cases, the training and testing dataset is divided
as Ttrain = 0.8Ttest.

The objective is to make predictions beyond X1, i.e., on
X2, and to evaluate the potential of the proposed method for
temporal generalization. The training dataset for the second
stage, LEM or CoRNN, is generated by testing causal PINN at
256 spatial locations across 160-time steps, implying kx = 256
and kt = 160. Finally, LEM and CoRNN testing is performed
on the untrained temporal domain for 40 time steps.

2) Moving Load: This experiment validates the potential of
the proposed methodology in generalizing in the parametric
domain. Despite being a fundamental problem across structural
engineering, simulating moving load problems within commer-
cial finite element packages is computationally expensive [34],
and generalizing it would aid the engineers in downstream
predictions of deflection profiles at reduced computational cost.
The moving load problem represents a train-track or catenary-
pantograph interaction in railway systems. In particular, a point
force moving across a simply supported beam is considered.

A finite element-based method is used to compute 100 mid-
point deflection profiles of beams for varying loading ranging
from 1N to 6N. Training and testing dataset is divided as
Mtrain = 0.8Mtest, i.e., the first 80 equispaced deflection profiles
between the loads 1N to 5N are used to train the LEM and
CoRNN. Specifically, the training dataset size for the proposed
method represents mid-point deflection at 344 temporal loca-
tions across 80 different loadings. The beam deformations are
predicted for 19 unseen equispaced loadings between 5N to 6N
through LEM and CoRNN.

3) Catenary Contact Wire Uplift: This experiment aims to
validate the method of generalizing a real-world catenary-
pantograph interaction in the parametric domain. In the first
stage, the interaction between the pantograph head and contact
wire is modeled, and the calculation of dynamic contact wire
uplift due to the contact forces is performed in a unknown sense.
The method employed a validated finite element model using the
absolute nodal coordinate formulation (ANCF) characterizing
catenary nonlinearity. In addition, a simplified lumped mass
model simulated the three critical modes of the pantograph [35],
as shown in Fig. 2. For this work, only the data of catenary
contact wire uplift for different speeds of train [36] serves as the

Fig. 2. Catenary-pantograph experiment. Left: Real-world catenary-
pantograph setup in railways. Catenary-pantograph interaction simula-
tion model. Right: The Catenary is modeled by ANCF beam elements
(contact and messenger wires) and cable elements (droppers). The
pantograph is a lumped mass model with three degrees of freedom.

output from the first stage, and the model and method details are
treated as unknown.

The train speed spans from 50 kmh−1 to 90 kmh−1, incre-
menting in intervals of 10 kmh−1. The dataset contains the
catenary contact wire deflection at 353 spatial locations across
five speeds. The recurrent networks in the second stage are
trained on two specific speeds, 50 kmh−1 and 60 kmh−1. The
trained recurrent models are used for predicting the contact wire
deflection for three novel train speeds, which are 70 kmh−1,
80 kmh−1, and 90 kmh−1.

4) Inverse Problem for Timoshenko Double Beam System:
In addition, an experiment regarding inverse problem is carried
out to showcase the potential of the proposed method in han-
dling ill-posed problems. Inverse problems involve determining
unknown parameters or functions based on known observables
within a system. Such problems are ill-posed, requiring ad-
ditional data at specific locations for the observables. These
unknowns, often referred to as quantities of interest, include
force functions, initial conditions, boundary conditions, or pa-
rameters. The two-stage method predicts quantities of interest in
unseen domains. An inverse problem is solved for a Timoshenko
double beam system connected by a Winkler foundation [15] to
estimate the unknown force function acting on the system, given
displacement profiles of the beam system.

B. Baselines, Hyperparameters, and Error Metrics

The second stage in the proposed methodology is based on
recurrent neural architectures. Hence, the comparisons for all the
experiments are carried out with traditional sequential architec-
tures, RNN, LSTM, and GRU, replacing LEM and CoRNN in
the second stage. In addition, comparisons with further advanced
methods for modeling sequential data, such as neural ordinary
differential equation (NODE) [28] and transformers [37] have
been carried out. All methods employed the Adam optimizer to
train the recurrent architecture. Consistent hyperparameters are
chosen across different methods, and different hyperparameters
are mentioned as follows.

For Euler–Bernoulli and Timoshenko beam experiments, the
learning rate and hidden size are 0.0001 and 32, respectively.
CoRNN and LEM-specific parameters, Δt, γ, and ε, are taken
to be 0.05, 1, and 0.01, respectively. Specific to the transformer,
the number of attention heads is 8. The model consists of
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Fig. 3. Euler–Bernoulli beam on the Winkler foundation. The black dashed line separates the training and testing regions. The red dashed line
indicates predictions, and the solid blue line represents the actual deflection. These representations are kept consistent with the following figures.
The black dotted circles highlight the discrepancy region. (a) Deflection causal PINN-LEM. (b) Absolute error for deflection in generalized temporal
domain. (c) Snapshot at t = 0.83. (d) Snapshot at t = 0.85. (e) Snapshot at t = 0.98. (f) Snapshot at t = 0.99.

6 encoder–decoder layers. The dimension of the feedforward
network within the transformer is 512. For all the methods,
400 000 epochs are carried out for the Euler–Bernoulli case
and 200 000 for the Timoshenko case.

For the moving load problem, the chosen hyperparameters,
including the learning rate, hidden size, number of epochs, and
Δt, maintain consistent values across all models: 0.00001, 160,
20 000, and 0.05, respectively. For training the transformer, the
number of attention heads is 8, with three encoder–decoder
layers. The dimension of the feedforward network within the
transformer is 128. Similarly, for CoRNN, the hyperparameters
γ and ε remain fixed at 1 and 0.01, respectively.

Subsequently, for the catenary-pantograph experiment, the
hyperparameters for all sequential models, comprising the learn-
ing rate, hidden size, number of epochs, and Δt, are configured
to 0.001, 128, 20 000, and 0.1, respectively. Analogously, in line
with prior instances, the hyperparameters γ and ε for CoRNN
are set at 1.0 and 0.01, respectively. For the transformer, the
number of attention heads is 8 with six transformer layers and
512 as the dimension of the feedforward network.

Four different error metrics are used to evaluate the results.
First, relative L2-norm of the quantity of interest û, which
is defined with respect to the ground truth u as ‖û−u‖2

‖u‖2
. The

second error metric is the maximum absolute error (max error)
computed as maxni=1 |ui − ûi|. Here, |.| represents the absolute
value function. Here, ui represents the ground truth at the ith
data point and ûi represents the corresponding predicted value.

The third error metric is the explained variance score

1 −
∑n

i=1(ui − ûi)
2∑n

i=1(ui − ū)2

where n is the number of data points, and ū represents the mean
of the ground truth. Finally, the last metric is the mean absolute
error calculated by 1

n

∑n
i=1 |ui − ûi|, where the symbols have

their same meaning.

C. Results

1) Euler–Bernoulli and Timoshenko Beam on the Winkler
Foundation: Figs. 3 and 4 represent the predictions obtained
by LEM for the Euler–Bernoulli and Timoshenko experiments,
respectively. Fig. 3 top row left depicts the deflection of the
beam over unseen time, and the right of the top row shows the
absolute error obtained in the deflection prediction. The second
row presents the snapshots of deflection predictions at four
instances of unseen time. The red dots indicate predictions, and
the solid blue line represents the deflection. Table I compares the
neural differential equation-based methods with the traditional
sequential methods for generalization. While RNN and other
sequential methods exhibit some generalization ability, LEM
outperforms them across all metrics, as evidenced by Table I.
In addition, the other sequential methods demonstrate less ac-
curacy in predicting unseen domains. Thus, both Fig. 3. Table I
collectively demonstrates that LEM achieves higher accuracy
in predicting beam deflection on the Winkler foundation than
alternative methods.

Fig. 4 top two rows depict the Timoshenko beam deflection
and rotation on the Winkler foundation over time. The second
row in Fig. 4 displays the absolute errors of deflection and rota-
tion observed in the generalized time, showing a minor increase
in error as time progresses. The last row presents the snapshots
of deflection and rotation predictions at two different instants
of time. The red dots indicate predictions, and a solid blue line
represents the actual deflection simulated using causal PINN.
Table I compares the proposed and other sequential methods
for Timoshenko beam deflection and rotation for the unseen
temporal domain. LEM outperforms them across all metrics, as
seen by the results provided in Table I.

2) Moving Load: Fig. 5 illustrates the beam deflections for
a moving load across a simply supported beam. The top two
rows in Fig. 5 show the predicted deflections and the obtained
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Fig. 4. Timoshenko beam on the Winkler foundation. (a) Deflection causal PINN-LEM. (b) Rotation causal PINN-LEM. (c) Absolute error for
deflection in generalized temporal domain. (d) Absolute error for rotation in generalized temporal domain. (e) Deflection snapshot at t = 0.83.
(f) Deflection snapshot at t = 0.98. (g) Rotation snapshot at t = 0.83. (h) Rotation snapshot at t = 0.98.

TABLE I
BEAM DEFLECTION, ROTATION, MOVING LOAD, AND CATENARY UPLIFT

absolute errors for different loading for LEM. The absolute error
increases minorly with an increase in the loading. The last row
of Fig. 5 present the snapshots of the predicted deflections. The
red dots depict predictions, while the blue solid line represents
actual deflection simulated using the FEM. Table I compares

LEM and CoRNN with other sequential methods, showcasing
the better generalization abilities of the proposed method.

3) Catenary Contact Wire Uplift: Fig. 6. illustrates catenary
contact wire uplift deflections at varying speeds (70 kmh−1,
80 kmh−1, and 90 kmh−1). The red dots depict predictions,
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Fig. 5. Mid-point deflection for moving load. (a) Mid-point deflection
FEM-LEM. (b) Absolute error in mid-point deflection for unseen loadings.
(c) Snapshot at Load 5.10N. (d) Snapshot at Load 5.95N.

Fig. 6. Contact wire uplift with different train speeds. (a, c, e): Contact
wire uplift prediction for unseen speeds. (b, d, f): Absolute errors in
contact wire uplift predictions for different train speeds.

while the blue solid line represents actual deflection simulated
using the FEM. Fig. 6(a), (c), and (e) represents the contact
wire uplift predictions at 70 kmh−1, 80 kmh−1, and 90 kmh−1,
respectively. Fig. 6(b), (d), and (f) shows absolute errors in those
uplift predictions. The errors for different speeds fall within a
similar range, yet it is evident that the error increases minorly
with the increase in train speed. Table I compares LEM and
CoRNN with other methods, showcasing that LEM performs
better in all metrics.

Fig. 7. Approximation of the force function (top) for the inverse problem
and corresponding absolute error in extrapolation (bottom).

4) Inverse Problem for Timoshenko Double Beam System:
To demonstrate the capability of the two-stage approach for
out-of-domain prediction in inverse problems, a Timoshenko
double-beam system is considered [15]. The goal is to pre-
dict the unknown force acting on the beam system outside
the training domain. PINN simulates the force function in
the first stage. In the second stage, these data are utilized to
train LEM, with testing performed in the out-of-domain re-
gion. Fig. 7 presents the force function acting on the beam
and the absolute error in predicting the force in an extrapo-
lation scenario. The error metric results for this experiment
include the L2 error, maximum absolute error, mean abso-
lute error, and explained variance score, obtained as 0.0224,
0.1349, 0.0309, and 0.9720, respectively. The results illustrate
the proposed method’s efficacy in extrapolating an inverse
problem.

VI. CONCLUSION

This work addressed the longstanding challenge of general-
izing simulations for engineering and industry. A resolution-
invariant pipeline is proposed, processing data at various reso-
lutions by introducing a novel two-stage approach combining
state-of-the-art simulators with classical mathematical models
infused in neural recurrent architectures. The presented ap-
proach efficiently generalizes dynamics in the time and paramet-
ric domain without relying on data from the untrained domain,
eliminating the need for tedious remeshing and resimulation in
computer-aided simulation software. Moreover, the proposed
workflow demonstrated superior performance over traditional
recurrent architectures for various dynamic simulation problems
in structural engineering. Experiments on real-world scenar-
ios like catenary-pantograph interactions in railway systems
motivate application to various industrial applications for en-
hancing simulation efficiency and accuracy in out-of-domain
predictions.

Potential future works include extending the proposed
methodology to high-dimensional problems and complex ge-
ometries such as shells and bridges. Another direction could
focus on accelerating the simulations through optimization
techniques and parallel computing, enabling real-time predic-
tions. In addition, industrial applications often contend with
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uncertainties and stochastic variations. Enhancing the method
to account for uncertainties in factors, such as material prop-
erties, loading conditions, and external influences would al-
low for probabilistic predictions, thereby increasing the ro-
bustness and applicability of the method in diverse industrial
scenarios.
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