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Abstract: This paper presents a condition-based treatment methodology for a type of rail surface defect called squat. The proposed meth-
odology is based on a set of robust and predictive fuzzy key performance indicators. A fuzzy Takagi–Sugeno interval model is used to predict
squat evolution for different scenarios over a time horizon. Models including the effects of maintenance to treat squats, via either grinding or
replacement of the rail, are also described. A railway track may contain a huge number of squats distributed in the rail surface with different
levels of severity. This paper proposes to aggregate the local squat interval models into track-level performance indicators including the
number and density of squats per track partition. To facilitate the analysis of the overall condition, a single fuzzy global performance indicator
per track partition is proposed based on a fuzzy expert system that combines all the scenarios and predictions over time. The proposed
methodology relies on the early detection of squats using axle box acceleration measurements. Real-life measurements from the Meppel-
Leeuwarden track in the Dutch railway network are used to show the benefits of the proposed methodology. The use of robust and
predictive fuzzy performance indicators facilitates the visualization of the track health condition and eases the maintenance decision process.
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Introduction

During recent years, a modal shift from road to rail has been
promoted in Europe. The idea is to increase the share of transport
demand for mobility of people and freight, reduce road traffic con-
gestion, make efficient use of the energy resources, and tackle the
major challenges of climate change. Major contributions are needed
in the optimal management of railway assets, evolving toward a more
automated predictive operation where functional assets are moni-
tored. This includes all the important indicators such as economic,
safety, and societal impacts, considering the perspective of both
railway infrastructure manager and users (Zoeteman 2001).

A typical set of railway assets is shown in Fig. 1, including
the track, station, superstructure, substructure, communication, cat-
enary, control room, signaling system, rolling stock, barrier, secu-
rity, and surrounding. In order to monitor and properly maintain the
railway assets, it is necessary to measure the evolution of important
health condition indicators over time, also called key performance
indicators (KPIs), for each of the critical assets. For example, in
Fig. 1, JAssetlabel ðtÞ relates to the KPI for the health condition of
an asset called Asset, uniquely labelled as label at time t. In the

Netherlands, the assets in the railway network includes more than
3,000 km of track and 388 stations, being one of the densest net-
works in Europe. In this network, the design of an optimal main-
tenance plan for all its assets is a challenging problem. To optimally
design the maintenance plans, the infrastructure manager requires
crucial information of each asset (Stenström et al. 2015a) and
maintenance decision making considering risk-averse situations
(Rockafellar and Royset 2015). Thus, the optimal maintenance
plan is a necessity because of the high demand from users and
government for a better quality of service and the need of keeping
costs as low as possible.

Maintenance performance indicators evaluate the system perfor-
mance and can be used to guarantee that these assets operate at an
acceptable level of functionality and safety. Parida andChattopadhyay

)2007 ) propose a general systems framework using a hierarchical
structure of multicriteria maintenance performance measurements.
Åhrén and Parida (2009) apply the same framework to the case
of benchmarking railway infrastructure maintenance operations.
Three different hierarchical levels are proposed: strategic level
for top management decisions, tactical level for middle manage-
ment, and functional level for supervisors and operators. The
general framework requires effective measurements of the health
condition of the assets considering that the different assets degrade
at different rates due to the effect of different exogenous sources.
Particularly, the focus of this paper is to design robust and predic-
tive fuzzy performance indicators for health condition monitoring
of railway tracks, considering a particular major type of rolling
contact fatigue (RCF) called squat (Li et al. 2015).

In the Netherlands more than 40% of the railway maintenance
budget is allocated yearly to track maintenance (Zoeteman and van
Meer 2006; Zoeteman et al. 2014). The presence of RCFs accel-
erates track degradation, which negatively influences its health con-
dition. It also increases the noise level that affects people living
in the surroundings and in a worst case affects safety because se-
vere RCFs can result in derailment. For track maintenance to be
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effective, the planning should consider not only costs but also the
dynamics of RCFs. Complex interactions between environment,
vehicles, wheels and track interface, and structure and also different
behaviors under maintenance operation such as grinding and rail
replacement can be considered. Patra et al. (2009) modeled rail
degradation by a time-to-failure function using million gross tons
(MGT) measurements and approximately 12 failure events; they
proposed decision making in a Monte Carlo simulation setting.
The maintenance operations are modeled as different cost func-
tions, including rail grinding costs, track tamping costs, and rail
lubrication costs, among other maintenance operations. Stenström
et al. (2015b) assess the value of preventive maintenance in com-
parison with corrective maintenance. The idea is to analyze the
cost-benefit of using preventive maintenance including four differ-
ent maintenance costs: maintenance inspections, repair of potential
failures, repair of functional failures, and service and production
loss. In the case study for a Swedish railway line, the 10 costliest
railway sections are found to have three times the tonnage com-
pared with the sections with the lowest costs, and also the costliest
sections experience 4.5 times more track failures. The conclusion is
that the railway sections with the lowest total maintenance cost
have implemented more preventive maintenance actions.

In the literature, different studies have been carried out to
present how a degradation model for tracks can be embedded on
asset management to facilitate maintenance plans. Track geometry
measurements relying on statistical analysis are used to capture the
track degradation effect (Sadeghi and Askarinejad 2010; Andrade
and Teixeira 2011, 2012; Andrews 2012; Vale and Lurdes 2013;
Nathanail 2014; Guler 2014; Weston et al. 2015). In those papers,
different time-dependent degradation models are proposed; they
can all be used to improve maintenance interventions. Estimation
of the track safety and consideration of the probability of rail break
has also been investigated (Schafer and Barkan 2008; Burstow et al.
2002; Sandström and Ekberg 2009). Detailed mechanical models
can give many insights about the evolution of rail defects; however,
the use of those models for maintenance planning operations re-
quires sophisticated knowledge about the track and its operational
conditions that are not always available or easy to obtain in prac-
tice. Fuzzy logic has increasingly been used in different fields;
in particular, in the ones where uncertainties can influence the

decision process. It is used to measure performance in different
infrastructures by predicting failure of components (Senouci et al.
2014; Sadiq et al. 2004) and optimizing asset condition (Xu
et al. 2014; Wang and Liu 1997) and decision making (Khatri et al.
2011). In this paper, the use of interval fuzzy model is proposed to
capture the most important dynamics of squats in railway infra-
structure from the maintenance operation point of view. The aim
is to keep the prediction as simple as possible, but suitable enough
to ease decision making in practice. The use of KPIs that are able to
explicitly include the dynamics of the deterioration of the assets,
together with an appropriate set of scenarios for the principal sour-
ces of stochasticities that might affect their performance, is recom-
mended. A fuzzy Takagi–Sugeno (TS) interval model (Škrjanc 2011;
Nuñez and De Schutter 2012; Sáez et al. 2015) is calibrated using
real-life data collected over years of field tests and measurements,
which helps to obtain numerical models capable of predicting squat
growth over a time horizon under different possible scenarios and
under different maintenance decisions.

Based on the interval fuzzy models for squats, a condition-based
methodology for rails is proposed using different KPIs that are
defined in a track-partition level that allows the grouping of defects
located in a given track partition. In this methodology, number and
density of squats are considered over a prediction horizon under
three different scenarios, i.e., slow, average, and fast growth. Then,
to facilitate visualization of the track health condition and to ease
the maintenance decision process, a fuzzy global KPI based on
fuzzy rules for each partition that merges the different KPIs over
the prediction horizon and scenarios is proposed. The methodology
is evaluated with data from a Dutch railway track, relying on
the use of technology-based axle box acceleration (ABA) measure-
ments capable of detecting the early-stage squats on the rail
(Molodova et al. 2014; Li et al. 2015). An introduction of the ABA
measuring system is described in ABA-based health condition
monitoring in railways, including the background of the ABA
measurement system and its application in rail condition monitor-
ing based on ABA.

Fig. 2 is the flowchart of the proposed methodology divided in
three steps. In Step 1, relying on ABA measurements, the health
condition of the track and severity are estimated. A list of defects
is assumed to be provided by the detection algorithm. In Step 2,

Fig. 1. Main components of railway infrastructures
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using interval fuzzy TS model, the growth of each detected defect i
is evaluated over time and different possible evolution scenarios are
considered. Threemodels are evaluated, with grinding, replacement,
and without maintenance. The idea is to see the consequences of the
maintenance operations on the detected squats for different scenar-
ios over a prediction horizon. At the end, in Step 3, a global fuzzy
KPI is used to describe the condition at a track partition level for
a given travel direction, left and right rails. The global fuzzy
KPI at a partition combines the effects of a vector of KPIs over
a prediction horizon, considering three most representative defect
evolution scenarios.

The paper is divided as follows. In next section, the main ele-
ments of the ABA-based detection methods are presented. Next, in-
terval fuzzy models for squats are presented for three cases: without
maintenance, after grinding, and after replacement. Then different
KPIs are defined at a track partition level in order to aggregate
the local dynamic behavior of squats. Because of the number of sce-
narios and prediction horizon, the fuzzy global KPI is proposed
to facilitate decision making. Next the numerical results and discus-
sion are presented. Finally, conclusions and further research are
discussed.

ABA-Based Health Condition Monitoring in Railways

Background of the ABA Measurement System

There are different methods to diagnose the condition of rail
defects, including ultrasonic measurements, eddy current testing,

image recognition, and guided wave–based monitoring, among
other technologies. Each has different advantages and disadvan-
tages. In this paper, a technology capable of detecting defects in an
early stage is needed, thus the use of ABA measurements is con-
sidered (Li et al. 2008; Molodova et al. 2014). Li et al. (2015) in-
vestigated the feasibility of detecting early-stage squats using an
ABA prototype. It is reported that squats could be detected by ana-
lyzing the frequency content of the ABA signals in the wavelet
power spectrum. In practice, the useful frequency band for early
detection of squats ranges from 1,000 to 2,000 Hz and 200 to
400 Hz (Molodova et al. 2014).

In the literature, it has been reported that ABA systems can be
employed to detect surface rail defects like corrugation, squats, and
welds in poor condition. The ABA system offers the advantages of
(1) having a lower cost than other types of detection methods,
(2) being easy to maintain, and (3) ability to be implemented in
in-service operational trains. Other significant advantages that
ABA offers over similar measurement systems are (1) the ability
to detect small defects with the absence of complicated instrumen-
tation and (2) the ability to indicate the level of the dynamic contact
force (Molodova et al. 2015).

Rail Condition Monitoring Based on ABA

In this study, the authors are users of the ABA detection method-
ology presented in Li et al. (2015) andMolodova et al. (2014); thus,
it is assumed that a list of squats and their location are available.
Define the counter of squat defects as i ¼ 1; 2; : : : ;Ndefects, where
xi represents the position of squat i. The variables Hðx; kÞ and

Fig. 2. Flowchart of the proposed methodology
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Lðx; kÞ are defined as the real rail condition and real squat length,
respectively, defined at position x and time step k. The focus is only
on positions xi where squats are detected. To simplify the notation,
it is assumed HiðkÞ ¼ Hðxi; kÞ and LiðkÞ ¼ Lðxi; kÞ represent the
severity and the length of squat i at time step k.

To systematically classify squats in terms of severity, the
terminology used in Smulders (2003), UIC Code (2002), and Rail
Damages (2001) is followed. The definitions of these three refer-
ences are compatible with one another. Although the transition
between one class to the other is not always abrupt, fixed values
for those transitions have been defined according to the practical
experience of the system. Depending on the squat length LiðkÞ,
measured in millimeters, the severity of the squat can be used to
represent the health condition of the rail at location xi as follows:

HiðkÞ ¼

8>>>>>>><
>>>>>>>:

S if 0 ≤ LiðkÞ < 8

A if 8 ≤ LiðkÞ < 30

B if 30 ≤ LiðkÞ < 50

C if 50 ≤ LiðkÞ < 60

RC if LiðkÞ ≥ 60

where S = seed squat; A = light squat (A squat); B = moderate squat
(B squat); C = severe squat (C squat); and RC = squat with risk of
derailment. The boundaries were defined based on general guide-
lines to classify squats.

Fig. 3 gives an example of defect growths collected from field
measurements in the Meppel-Leeuwarden track. In the figure, the
x-axis represents the kilometer position of the track where the
squats are located and the y-axis indicates time in three different
months, Month 0 (moment of the measurement), Month 6, and
Month 12. In the diagram, A squats are drawn as circles and B
squats are squares. Different squats grow with different rates. In
the average case, the track measurements show that it takes approx-
imately 9 months for an A squat of 20 mm to evolve into a B squat
of 30 mm.

In this study, the ABA measurements are used to develop a
model for defect evolution. For each squat, the related energy of
the ABA is available using wavelet spectrum analysis and advanced
signal processing methods (Molodova et al. 2014). Relying on the
ABA measurement, the energy values of the ABA signals can be
calculated at every position x at time step k as Eðx; kÞ. From the

energy signal, the interest is only in those locations with squats,
namely, EiðkÞ ¼ Eðxi; kÞ. For using the energy of the ABA signal
to predict the squat length evolution, a correlation between the
squat length and energy of the ABA signal was performed. Photo-
graphs from track visits of several years are used to measure the
lengths of the squats and to fit the piecewise linear correlation
model. The estimated length L̂iðkÞ of squat i at time step k as func-
tion of the energy value EiðkÞ is given by

L̂iðkÞ ¼

8>>>>><
>>>>>:

g1EiðkÞ þ q1 if EiðkÞ < 80

g2EiðkÞ þ q2 if 80 ≤ EiðkÞ < 170

g3EiðkÞ þ q3 if 170 ≤ EiðkÞ < 300

g4EiðkÞ þ q4 if EiðkÞ ≥ 300

where the slope of local linear functions is gm, m ¼ 1; : : : ; 4, and
the bias qm, m ¼ 1; : : : ; 4, are adjusted to the specific track. For
Eq. (2), previous works have been used (Li et al. 2011, 2015;
Molodova et al. 2015). In general, it is possible to say that the cor-
relation coefficient and residual standard are affected by the speed
of the measurement train. In this paper, it is assumed that the meas-
urement is performed at commercial speed as was done for the test
measurement so far, and segments that were measured out of a
reasonable range of speed were disregarded.

A global view of Step 1 of the methodology, estimation of track
health condition based on ABA, is presented in Fig. 4. As shown in
the figure, in order to estimate length LiðkÞ, the energy value EiðkÞ
is calculated using the ABA measurement. Hence, relying on the
estimated squat lengths, the rail health condition HiðkÞ can be ap-
proximated. In the figure, a squat is detected with an energy value
EiðkÞ ¼ 145 m2=s4, the estimated squat length L̂iðkÞ ¼ 43 mm,
and the estimated health condition ĤiðkÞ ¼ B.

Interval Fuzzy Models for Squats

Maintenance-Oriented Models for Squats

Typically, maintenance slots in the Dutch railway network are
decided based on long- and short-term planning for preventive
and corrective maintenance, respectively. In the long term, the con-
tractor should inform the asset manager at least 1 year before cyclic
grinding for using the equipment needed. In the short term, nor-
mally the maintenance is performed when the squats are in the last
stage of growth (C squat). Thus, a predictive approach by employ-
ing well-designed KPIs should aim to improve both short- and
long-term planning by (1) keeping a good balance between costs
and health condition of the track, (2) simplifying the design of
maintenance plan over the whole time horizon, and (3) indirectly
increasing the track safety.

The experimental results show that each squat can grow at dif-
ferent rates. The estimation of squat lengths can be affected by the
subjectivity of human error. For instance, one source of uncertainty
comes from the fact that visually only the rusty area of the defects is
used to measure length, while the defect might be longer. Fuzzy
systems can work under subjective environments. In the proposed
methodology, the design of the global fuzzy KPI deals with the
subjectivity. The definition of a low or a high number of defects
will depend on the subjectivity of the infrastructure manager,
and on how this information is incorporated for maintenance deci-
sion making. In order to generalize this characteristic, interval
fuzzy models can be used to capture the stochasticities of different
scenarios for the squat growth. The upper bound of the interval
represents a worst-case scenario, while the lower bound represents

Fig. 3. Example of defects evolution over time; the x-axis is the kilo-
meter position in the track, xi the position of squat i, y-axis is time
every 6 months; circles are A squats, squares are B squats
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a slow growth rate scenario. In the interval fuzzy models, the aver-
age behavior is given by a TS fuzzy model. This is used to approxi-
mate nonlinearities by smoothly interpolating affine local models.
Each local model is involved in the global model based on the
activation of a membership function. According to literature, the
identification of interval fuzzy models is divided into three steps:
clustering method to generate fuzzy rules, identification of the TS
local linear parameters (average model), and identification of the
fuzzy variance for each rule (Škrjanc et al. 2005; Škrjanc 2011).
In this paper, the use of the interval fuzzy models in Nuñez and
De Schutter (2012) and Sáez et al. (2015) is proposed, which in-
cludes Gustafson–Kessel clustering, local identification of the lin-
ear parameters, and optimization of a parameter α to adjust the
width of the interval, minimizing both the area of the band and
number of data points outside the band.

The general problem of interval defect evolution is as follows.
Consider different defect growth scenarios h ¼ h1; h2; : : : ; hH ,
time steps t ¼ k; kþ 1; kþ 2; : : : ; kþ Np, and the maintenance
action at time step k, uðkÞ. The prediction model for the growth
of a squat can be written as

L̂h
i ðkþ 1Þ ¼ fhj ½LiðkÞ; uðkÞ�; xi ∈ ½xj; xjþ1Þ

where L̂h
i ðkþ 1Þ = estimation of length of the squat i located in the

track partition j at the time step kþ 1 considering the scenario h.
The model considers the effect of maintenance uðkÞ and the initial
condition of the squat LiðkÞ. Depending on the location of the squat
i, xi, a local model is used corresponding to the track partition j
where the squat is located, xi ∈ ½xj; xjþ1Þ. It is assumed that the
dynamics for different squats are similar if they are in the same
track partition under the same scenario.

In this paper, three maintenance actions are considered,
uðkÞ ¼ fu1; u2; u3g, where u1 is without maintenance, u2 is grind-
ing, and u3 is replacement. Three scenarios are also evaluated,
h ¼ h1; h2; h3, where h1 represents slow-growth, h2 average-
growth, and h3 fast-growth scenarios.

Dynamics of Squats without Maintenance

In the absence of maintenance, uðkÞ ¼ u1, the prediction model
for the average growth scenario, h2, is formulated based on the
TS fuzzy model

L̂h2
i ðkþ 1Þ ¼ fh2j ½LiðkÞ; u1� ¼ fTSj ½LiðkÞ� ¼

XNR

r¼1

βjr½LiðkÞ�LjrðkÞ

LjrðkÞ ¼ ajrLiðkÞ þ bjr

βjr½LiðkÞ� ¼
Ajr½LiðkÞ�PNR
r¼1 Ajr½LiðkÞ�

where ajr, bjr = parameters of the fuzzy local model on rule
r, r ¼ 1; 2; : : : ;NR; and βjr½LiðkÞ� = normalized activation
degree of the rule r. In this paper the use of Gaussian functions
is proposed to model the membership degrees, Ajr½LiðkÞ� ¼
expf−0.5cjr;1½LiðkÞ − cjr;2�2g, defined by parameters cjr;1 and
cjr;2 given by the Gustafson–Kessel clustering algorithm.

Once the TS model is obtained, the slow-growth and fast-growth
scenarios are used as lower and upper bounds of the average growth
scenario, L̂h2

i ðkþ 1Þ, respectively. The equations can be defined as

L̂h3
i ðkþ 1Þ ¼ fj

TS½LiðkÞ� ¼
XNR

r¼1

βjr½LiðkÞ�fLjrðkÞ

þ αh3Δjr½LiðkÞ�g

L̂h1
i ðkþ 1Þ ¼ fTS

j
½LiðkÞ� ¼

XNR

r¼1

βjr½LiðkÞ�fLjrðkÞ−αh1Δjr½LiðkÞ�g

Δjr½LiðkÞ� ¼ σjr½1þψT
jrðφjrφT

jrÞ−1ψjr�0.5

where L̂h3
i ðkþ 1Þ and L̂h1

i ðkþ 1Þ = estimated growth length
of squat i in time step kþ 1 in the fast-growth and slow-growth

Fig. 4. Global scheme of the main components of Step 1: estimation of track health condition based on ABA (images by Alfredo Núñez)
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scenarios, respectively; and αh3 and αh1 = tuning parameters in
the fast-growth and slow-growth scenarios, respectively. Moreover,
φjrφT

jr, ψjr ¼ ½LiðkÞ; 1�T and σjr are the covariance matrix, regres-
sion matrix, and variance of the local model.

Fig. 5 depicts the proposed interval fuzzy models including 177
data points used to capture the squat evolution in different stages of
growth. A subset of the data used for analysis is included in Table 1.
The A squats from 8 to 30 mm in length have no or shallow cracks.
The B squats ranging from 30 to 50 mm grow quickly. The B squats
evolve to C squats when the network of cracks beneath the squat
gets further spread. All three stages are shown by reference photos
of an A squat, B squat, and C squat in Fig. 5.

Rail Grinding Effect

Squats can be effectively treated by grinding when they are in the
early stage of growth. Cyclic rail grinding keeps control of not
only maintaining the rail profiles but to plan track maintenance

efficiently (Magel and Kalousek 2002). Fig. 6 depicts squat growth
before and after grinding, with black circles indicating those squats
that did not disappear after grinding. As seen in the figure, some A
squats are located in the effective zone of grinding such that these
squats have a zero length after grinding. Those A squats that are
imminent to becoming B squats are located in the ineffective zone
for grinding as well as B squats and C squats. Moreover, three
growth scenarios in the effective zone are specified to capture the
squat evolution rate. Even though grinding severe squats postpones
rail replacement, it could accelerate squat evolution because the
cracks have not totally disappeared.

The growth model for squat i by considering grinding effect can
be expressed as

L̂hiðkþ 1Þ

¼
(

0 LiðkÞ ≤Leff
G Effectivezone for grinding

zhG½LiðkÞ−Leff
G � LiðkÞ> Leff

G Ineffectivezone for grinding

where Leff
G = critical squat length that estimate effectivity of grind-

ing, with Leff
G approximately 20 mm in Fig. 6 for a grinding depth of

1.0 mm; and zhG = slope of the linear model in the ineffective zone
for grinding for different scenarios h, slow-, average-, and fast-
growth scenarios.

Rail Replacement Effect

When the squat severity becomes worse and cracks grow consid-
erably, grinding is not efficient anymore. Therefore, replacement is
the only solution. Because replacing a piece of rail takes time and is
costly, optimal decision making for when and where the rail should
be replaced is important. Higher rail (larger radius) and low rail
(smaller radius) have different degradation behaviors (Patra et al.
2009), thus usually only the most needed rail is replaced. Rail
replacement is performed using welds to connect the new rail with
the old one. After replacement, the rail surface defects will totally
disappear by the installation of new rail, whereas development of
new squats will depend on various factors, such as track conditions
and MGT. In the case of the welds, because they are composed by
materials with different properties than the rails, they are prone to
squat defect appearance (Lewis and Olofsson 2009).

Fig. 5. Interval fuzzy model for squat growth in the case study track
(images by Alfredo Núñez)

Table 1. Subset of Data Used for Squat Analysis Including Defect Position
and Visual Length at Times k and kþ 1

Squat Position (km) LiðkÞ (mm) Liðkþ 1Þ (mm)

1 104.8438 30.7260 34.7465
2 105.1051 37.7420 40.5086
3 105.1404 33.2264 37.0496
4 105.2116 34.2207 37.7779
5 105.3215 46.7870 49.1017
6 105.3901 33.0151 36.8862
7 105.4195 19.1797 21.6607
8 105.4269 20.2236 22.5435
9 105.4344 9.4918 12.4747
10 105.4561 33.2798 37.0903
11 105.4613 22.8311 24.6695
12 105.4953 19.5933 22.0216
13 105.5827 14.5360 16.7962
14 105.5852 19.5432 21.9787
15 105.6353 11.0032 13.9019
16 105.6591 25.1642 27.1955
17 105.7462 15.4564 17.7552
18 106.3105 28.7262 32.2116
19 106.8735 55.1141 57.1707
20 107.2845 17.8761 20.4044

Fig. 6. Squat growth before grinding and after grinding classified in
two effective and ineffective zones for grinding operations; in this case,
the depth of the grinding was approximately 1.0 mm
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Figs. 7(a and b) show squat growth before and after rail replace-
ment. Fig. 7(a) shows the squat growth between welds where all the
squats will disappear after replacement. The model assumes that no
squats will appear during a long horizon by considering that newly
developed squats can be detected in the next measurement cam-
paign. Fig. 7(b) shows squat growth on the welds in a period after
replacement. The exact time instant when the growth starts is re-
lated to quality of the weld. This means that for those welds that
have good quality, the starting point would be much later.

In the case of between welds, the squat length after replacement
is equivalent to zero during a time horizon N1. The growth model
on the weld can be expressed according to the time N2, when squat
can appear. Before time kþ N2, no squat is present in the weld,
while at kþ N2 þ 1 the squat will start to appear and evolve based
on the proposed growth scenarios

L̂h
i ðxw1

; kþ tÞ ¼ 0 t ¼ 1; 2; : : : ;N1; h ¼ h1; h2; h3

L̂h
i ðxw2

; kþ tÞ ¼ 0 t ¼ 1; 2; : : : ;N2; h ¼ h1; h2; h3

L̂h
i ðxw2

; kþ N2 þ 1Þ ¼

8>><
>>:

fj
TSðΔLiÞ if h ¼ h1

fi
TSðΔLiÞ if h ¼ h2

fj
TSðΔLiÞ if h ¼ h3

where xw1
= some position between the welds; xw2

= location of the
weld; and ΔLi = small value that triggers the growth when squat i
starts evolving at the thermite weld at time instant kþ N2 þ 1.
After the squat appears, the interval fuzzy model will capture its
evolution over time.

Key Performance Indicators for Rail Health
Condition

Description of KPIs

The monitoring of the evolution of a single squat might not be prac-
tical from the maintenance perspective. Aggregated information
over bigger track partitions can facilitate the infrastructure manager
decision over the maintenance plans. In the case of squats, KPIs
are proposed considering the number of A, B, and C squats and

the number of squats with potential risk of rail break called RC
squats, at different times t and different growth scenarios h. More-
over, because a significant number of B and C squats near each
other indicate a high potential risk to track safety, a KPI is proposed
relying on a measure of density of squats B and C. Assume the
function δdh;jðx; kÞ is provided by the ABA detection algorithm
for the current instant of measurement k. The function equals to
1 if a squat type d ∈ fA;B;C;RCg is located at position x, instant
k, partition j, and growth scenario h, and equals to 0 otherwise.
Used as the initial condition, and relying on the interval fuzzy
model, it is possible to predict δdh;jðx; tÞ for any time horizon,
t ¼ 1; : : : ;NP. The growth of new squats during the prediction
horizon is not considered in this paper because it is assumed that
new squats will be detected in the next measurement campaign at
instant kþ 1, where the models can be updated according to the
new conditions.

The KPIs of squat numbers at partition j, instant t, and scenario
h can be expressed as

yAh;jðtÞ ¼
X

x∈½xj;xjþ1Þ
δAh;jðx; tÞ

yBh;jðtÞ ¼
X

x∈½xj;xjþ1Þ
δBh;jðx; tÞ

yCh;jðtÞ ¼
X

x∈½xj;xjþ1Þ
δCh;jðx; tÞ

yRCh;j ðtÞ ¼
X

x∈½xj;xjþ1Þ
δRCh;j ðx; tÞ

Also, to estimate the density of B and C squats dBCh;j ðx; tÞ, a
window is defined around the coordinate x (in this paper, thewindow
is 50 m in track length). The function dBCh ðx; tÞ equals the number of
squats B or C in the moving window ½x − 0.025; xþ 0.025�. The
KPI density for partition j, instant t, and scenario h can be defined
as the area of the density function as follows:

ydBCh;j ðtÞ ¼
P

x∈½xj;xjþ1Þd
BC
h ðx; tÞ

xjþ1 − xj

Define a vector containing all the KPIs called yh;jðtÞ for parti-
tion j, instant t, and scenario h

(a) (b)

Fig. 7. (a) Length of squats Liðkþ 1Þ will become zero no matter their initial length LiðkÞ after rail replacement with a piece of new rail free of
damage; (b) squat is prone to appear on welds after rail replacement
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yh;jðtÞ ¼ ½yAh;jðtÞ; yBh;jðtÞ; yCh;jðtÞ; yRCh;j ðtÞ; ydBCh;j ðtÞ�T

where yAh;jðtÞ, yBh;jðtÞ, yCh;jðtÞ, yRCh;j ðtÞ, and ydBCh;j ðtÞ = number of A
squats, B squats, C squats, and RC squats, and the density of B and
C squats, respectively. Due to the large number of KPIs obtained in
terms of all the growth scenarios and predictions over time, two
simple steps are proposed to include the effect of the trajectories
of the KPIs into one global KPI:
1. First, transform the vector yh;jðtÞ for each partition j, scenario h,

and instant t, into a single KPI using a fuzzy expert sys-
tem yMh;jðtÞ ¼ fMamdani½yAh;jðtÞ; yBh;jðtÞ; yCh;jðtÞ; yRCh;j ðtÞ; ydBCh;j ðtÞ�.

2. Then, aggregate the single KPI over the set of scenarios and over
the prediction horizon for each partition j. This results in a sin-
gle global KPI for the current instant k, JRailj ðkÞ

JRailj ðkÞ ¼ faggregate
h
yMh1;jðkÞ; : : : ; yMh1;jðkþ NPÞ; : : : ;

yMhH ;jðkÞ; : : : ; yMhH ;jðkþ NPÞ
i

Mamdani Fuzzy KPI

For Step 1, a Mamdani fuzzy expert system is used to calculate a
single KPI (Mamdani and Assilian 1975). Even though the Mam-
dani fuzzy system approach was proposed more than 40 years
ago, it is still popular because of its simplicity and interpretability
(Camastra et al. 2015; Rezaei et al. 2015; Ozgur 2013). In this case,

32 fuzzy if-then rules are generated. The aim is to assign a member-
ship degree to each KPI to represent the contribution of each KPI in
the rail health condition

If yAh;jðtÞ isAr
1 and y

B
h;jðtÞ isAr

2 and y
C
h;jðtÞ isAr

3 and

yRCh;j ðtÞ isAr
4 and y

dBC
h;j ðtÞ isAr

5 then y
M
h;jðtÞ isGr

where Ar
1, A

r
2, A

r
3, A

r
4, A

r
5, and Gr = membership functions for rule

r; and yMh;jðtÞ = output Mamdani KPI. The KPIs are first normal-
ized, then Gaussian membership functions are used to fuzzify the
KPIs. Also, to defuzzify, the center of gravity method is applied in
order to obtain a crisp value at the end. Furthermore, relying on the
fuzzy rules, interdependency of KPIs and the Mamdani KPI are
captured as shown in Fig. 8. This figure presents how Mamdani
KPI models the influence in the health of the track of two KPIs,
varying from fully healthy (equals to 0) to completely unhealthy
(equals to 1), while all the other KPIs are assumed to be fully
healthy (equals to 0). In Fig. 8(a), a higher value for the BC density
is much more relevant than the contribution of the number of B
squats. In Fig. 8(b), a high number of C squats makes the most
significant impact on the rail health condition. The rail condition
will get highly unhealthy with high values of either density of the
BC squats or number of C squats. In Fig. 8(c), a high number of
RC squats will more strongly influence the health condition than
the number of A squats. In Fig. 8(d), a high number of A squats or
B squats will not have strong influence in the short term (the

(a) (b)

(c) (d)

Fig. 8. Interdependency of KPIs over Mamdani KPI, yMh;jðtÞ
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condition moves between the values 0.28 to 0.37). However, the
number of B squats more negatively affects the rail health condition
than the number of A squats. Fig. 8 shows the intuitive fact that rail
condition gets worse with an increasing number of squats from A to
B to C to RC.

In general, the number of A squats will not have a significant
impact on the current rail health condition. However, in the long
term, if not ground, A squats will evolve into severe defects. In
order to capture this and other dynamic effects, the prediction
model is used, and the global KPI is calculated over time and under
different scenarios.

Fuzzy Global KPI

Relying on defined Mandani KPIs yMh;jðtÞ, a fuzzy global indicator
is calculated to give a KPI over growth scenarios in partition j

JRailj ðkÞ ¼
P

h∈fh1;h2;h3g
PkþNp

t¼k wh:wt:yMh;jðtÞP
h∈fh1;h2;h3g

PkþNp

t¼k wh:wt

where JRailj ðkÞ = fuzzy global indicator; wh = growth weight per
scenario; and wt = weight exponentially showing time effect on
the KPIs. In this way, different KPIs are aggregated into a single
one that captures both stochasticities and evolution over time.

Numerical Results

Interval Fuzzy Models

This section summarizes the simulation results to predict the squats
length. A data set of squat lengths collected from different track
visits are used to evaluate performance of the squat growth model.
Identification data and validation data for the interval fuzzy TS
model are selected randomly, using 60% of the data for identifica-
tion and 40% for validation (Fig. 9).

To optimize the number of clusters, models from 2 to 10 clusters
are tested. For each number of cluster, the RMS of the prediction
error is used to determine the best model. During training, tuning
parameters of the confidence interval fuzzy model are considered
the same for the lower and upper fuzzy bounds. The idea is to
obtain the optimum parameter α that results in a minimum number
of data points outside the band where the band is as narrow as pos-
sible. Fig. 10(a) depicts the Pareto front of the normalized area of
the band versus the normalized number of data points outside the
band of α ranging from 0 to 40. Fig. 10(b) shows how α behaves in
terms of area of the band. As shown in the Fig. 10(b), the area will
reach a maximum value if α equals to 32.

In reality, the variance of the worst-case scenario is much larger
than the best-case scenario; thus the assumption of a fixed α must
be relaxed. Using full trajectories of different squats, ad hoc αh1

and αh3 were obtained to better fit the dynamics. The use of an
interval fuzzy model for prediction is presented in Fig. 11, with
a selected α ¼ 1.5 from the Pareto front and modified parameters
αh1 ¼ 0.32 × α and αh3 ¼ 1.7 × α. The squat length starts from a
small defect in 8 mm to a severe squat in 60 mm. An important
characteristic is when the predictive model reaches the highest
bound in 60 mm. This happens for squats of 48 mm for the
one-step-ahead prediction (within 6 months), and it will happen
for squats of 18 mm in the case of four-steps-ahead prediction
(within 24 months). For testing purposes, this model was evaluated

Fig. 9. Validation and identification data for the squat lengths; the tra-
jectories from Li et al. (2010) were used as test data

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized area of the band

N
or

m
al

iz
ed

 n
um

be
r 

of
 d

at
a 

po
in

ts
 o

ut
si

de
 th

e 
ba

nd

 

 

Pareto front interval fuzzy models

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 a
re

a 
of

 th
e 

ba
nd = 32

(a) (b)

Fig. 10. (a) Pareto front of number of data point outside versus area of the band; (b) area of band as function of alpha
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with another data set of the trajectories presented in Li et al. (2010).
All of them are contained within the interval model.

Fuzzy Global KPI for Track Health Condition

The full track of the Meppel-Leeuwarden is used to show the pro-
posed methodology. Fig. 12 shows a simple map of the track and
the four partitions j1, j2, j3, and j4. The partitions can be adapted

according to the maintenance plans or other design considerations.
The partitions in this paper are all approximately 10 km long,
except the last one which is 15 km long. Meppel is at kilometer
105, Leeuwarden is at kilometer 150, and the partitions are defined
between the kilometers as xj1 ¼ 105, xj2 ¼ 115, xj3 ¼ 125,
xj4 ¼ 135, and xj5 ¼ 150.

Fig. 13 shows the different KPI squat numbers over the four-
steps-ahead prediction when no maintenance is performed. All the
cases are calculated for the slow, average, and fast scenarios. In
Fig. 13(a), the number of A squats tends to reduce over time be-
cause they are becoming B squats. In Fig. 13(b), the number of B
squats increases because of the A squats becoming B squats, but
after t ¼ 12 the number of B squats decreases because most of
them are becoming C squats. When no corrective maintenance
is performed, it can be seen from Fig. 13(c) that after t ¼ 12 a large
number of C squats are in the track (worst-case scenario), which is a
very expensive situation because the only solution will be to replace
the rails. In Fig. 13(d), it is possible to see the moment when opera-
tional risk locations start to appear, indicating that maintenance
should be done before the worst-case scenario indicates their
appearance.

Fig. 14(a) shows how potential risk squats will start to appear
over time. Fig. 14(b) shows the KPI related to density of B and C
squats. As seen in Fig. 14(a), the first squats with high potential
risk of derailment, RC squats, appear for the worst-case scenario
at t ¼ 12, in four kilometer positions {130.9, 132.0, 132.5,
133.0}. Three of those four locations were already detected at t ¼
0 in Fig. 14(b), while all of them are already present in the BC squat
density signal at t ¼ 6 for all scenarios. This means that within the
first 12 months, the infrastructure manager is expected to take
actions to prevent risk of derailment.

Fig. 11. Interval fuzzy model predictions one, two, three, and four steps ahead

Fig. 12. Schematic track map between two stations, Meppel and
Leeuwarden, divided into four partitions, j1, j2, j3, and j4 (image
by Alfredo Núñez)
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Fig. 15 collects all the scenarios and signals over the whole pre-
diction horizon to indicate a single global fuzzy KPI for each track
partition. Three cases are considered, no maintenance, grinding at
t ¼ 0, and local rail replacement at t ¼ 0 for each severe squat.
Maintenance can considerably improve the rail health condition,
but to be fully efficient a combination of both grinding and replace-
ment is necessary. After the maintenance operations, the condition

is in the average condition range, where the potential risk of derail-
ment is considerably lower during the prediction horizon. The fol-
lowing result allows the infrastructure manager to decide how to
manage the rail in the future at each track partition. As in the
case of the absence of maintenance operation, a cost of 0 Euro with
the clear consequence of the bad rail health condition. In the case
of the grinding effect and the replacement effect, the results can be
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Fig. 14. For track position between 130.5 and 133.5 km, predictions over 24 months and three scenarios for (a) potential risk locations; (b) BC squats
density
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Fig. 13. Squat number KPIs for the slow-, average-, and fast-growth scenarios in the absence of maintenance operation: (a) number of A squats;
(b) number of B squats; (c) number of C squats; (d) number of RC squats
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applied as an effective factor for cost analysis of the track main-
tenance plan.

Conclusion and Future Research

In this paper a condition-based monitoring methodology was de-
veloped for a type of surface defect in the rail called squats. This
methodology is employed to construct an interval-based TS fuzzy
prediction modeling in order to monitor the track condition over the
maintenance time horizon per track partition.

The idea of using a interval fuzzy models is to capture all the
possible growth scenarios. Based on the interval fuzzy models for
squats, a condition-based methodology for railway tracks is pro-
posed using different KPIs defined at a track partition level,
allowing the grouping of defects located in a given track partition.
In the methodology, the number and density of squats are consid-
ered over a prediction horizon under three different scenarios, slow,
average, and fast growth. Then, to facilitate visualization of the rail
health condition and to ease the maintenance decision process, a
fuzzy global KPI is proposed based on fuzzy rules for each partition
that combine the different KPIs over the prediction horizon and
scenarios. Hence, the proposed methodology adds value by defin-
ing fuzzy global KPIs that are predictable over time to facilitate
maintenance decision making of the rail. As an example, the KPIs
obtained are presented for the Meppel-Leeuwarden track.

In further research, the study will be oriented into an optimization-
based methodology to effectively reduce lifecycle costs and to fit the
methodology closely to the real-life maintenance operations. The use
of new predictive and robust KPIs defined for different parties will be
considered, including infrastructure manager, rolling stock manager,
contractors, and users.
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